Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ageing Res Rev ; 96: 102285, 2024 04.
Article in English | MEDLINE | ID: mdl-38554785

ABSTRACT

Parkinson's Disease (PD) is a progressive neurodegenerative illness triggered by decreased dopamine secretion. Deep Learning (DL) has gained substantial attention in PD diagnosis research, with an increase in the number of published papers in this discipline. PD detection using DL has presented more promising outcomes as compared with common machine learning approaches. This article aims to conduct a bibliometric analysis and a literature review focusing on the prominent developments taking place in this area. To achieve the target of the study, we retrieved and analyzed the available research papers in the Scopus database. Following that, we conducted a bibliometric analysis to inspect the structure of keywords, authors, and countries in the surveyed studies by providing visual representations of the bibliometric data using VOSviewer software. The study also provides an in-depth review of the literature focusing on different indicators of PD, deployed approaches, and performance metrics. The outcomes indicate the firm development of PD diagnosis using DL approaches over time and a large diversity of studies worldwide. Additionally, the literature review presented a research gap in DL approaches related to incremental learning, particularly in relation to big data analysis.


Subject(s)
Deep Learning , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Bibliometrics , Databases, Factual , Dopamine
2.
Sensors (Basel) ; 23(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836846

ABSTRACT

Due to the modern power system's rapid development, more scattered smart grid components are securely linked into the power system by encircling a wide electrical power network with the underpinning communication system. By enabling a wide range of applications, such as distributed energy management, system state forecasting, and cyberattack security, these components generate vast amounts of data that automate and improve the efficiency of the smart grid. Due to traditional computer technologies' inability to handle the massive amount of data that smart grid systems generate, AI-based alternatives have received a lot of interest. Long Short-Term Memory (LSTM) and recurrent Neural Networks (RNN) will be specifically developed in this study to address this issue by incorporating the adaptively time-developing energy system's attributes to enhance the model of the dynamic properties of contemporary Smart Grid (SG) that are impacted by Revised Encoding Scheme (RES) or system reconfiguration to differentiate LSTM changes & real-time threats. More specifically, we provide a federated instructional strategy for consumer sharing of power data to Power Grid (PG) that is supported by edge clouds, protects consumer privacy, and is communication-efficient. They then design two optimization problems for Energy Data Owners (EDO) and energy service operations, as well as a local information assessment method in Federated Learning (FL) by taking non-independent and identically distributed (IID) effects into consideration. The test results revealed that LSTM had a longer training duration, four hidden levels, and higher training loss than other models. The provided method works incredibly well in several situations to identify FDIA. The suggested approach may successfully induce EDOs to employ high-quality local models, increase the payout of the ESP, and decrease task latencies, according to extensive simulations, which are the last points. According to the verification results, every assault sample could be effectively recognized utilizing the current detection methods and the LSTM RNN-based structure created by Smart.

3.
Diagnostics (Basel) ; 13(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37371016

ABSTRACT

Acute Lymphocytic Leukemia is a type of cancer that occurs when abnormal white blood cells are produced in the bone marrow which do not function properly, crowding out healthy cells and weakening the immunity of the body and thus its ability to resist infections. It spreads quickly in children's bodies, and if not treated promptly it may lead to death. The manual detection of this disease is a tedious and slow task. Machine learning and deep learning techniques are faster than manual detection and more accurate. In this paper, a deep feature selection-based approach ResRandSVM is proposed for the detection of Acute Lymphocytic Leukemia in blood smear images. The proposed approach uses seven deep-learning models: ResNet152, VGG16, DenseNet121, MobileNetV2, InceptionV3, EfficientNetB0 and ResNet50 for deep feature extraction from blood smear images. After that, three feature selection methods are used to extract valuable and important features: analysis of variance (ANOVA), principal component analysis (PCA), and Random Forest. Then the selected feature map is fed to four different classifiers, Adaboost, Support Vector Machine, Artificial Neural Network and Naïve Bayes models, to classify the images into leukemia and normal images. The model performs best with a combination of ResNet50 as a feature extractor, Random Forest as feature selection and Support Vector Machine as a classifier with an accuracy of 0.900, precision of 0.902, recall of 0.957 and F1-score of 0.929.

4.
Brain Sci ; 13(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37190508

ABSTRACT

Parkinson's disease (PD) is a complex degenerative brain disease that affects nerve cells in the brain responsible for body movement. Machine learning is widely used to track the progression of PD in its early stages by predicting unified Parkinson's disease rating scale (UPDRS) scores. In this paper, we aim to develop a new method for PD diagnosis with the aid of supervised and unsupervised learning techniques. Our method is developed using the Laplacian score, Gaussian process regression (GPR) and self-organizing maps (SOM). SOM is used to segment the data to handle large PD datasets. The models are then constructed using GPR for the prediction of the UPDRS scores. To select the important features in the PD dataset, we use the Laplacian score in the method. We evaluate the developed approach on a PD dataset including a set of speech signals. The method was evaluated through root-mean-square error (RMSE) and adjusted R-squared (adjusted R²). Our findings reveal that the proposed method is efficient in the prediction of UPDRS scores through a set of speech signals (dysphonia measures). The method evaluation showed that SOM combined with the Laplacian score and Gaussian process regression with the exponential kernel provides the best results for R-squared (Motor-UPDRS = 0.9489; Total-UPDRS = 0.9516) and RMSE (Motor-UPDRS = 0.5144; Total-UPDRS = 0.5105) in predicting UPDRS compared with the other kernels in Gaussian process regression.

5.
Diagnostics (Basel) ; 13(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37238305

ABSTRACT

Diabetes in humans is a rapidly expanding chronic disease and a major crisis in modern societies. The classification of diabetics is a challenging and important procedure that allows the interpretation of diabetic data and diagnosis. Missing values in datasets can impact the prediction accuracy of the methods for the diagnosis. Due to this, a variety of machine learning techniques has been studied in the past. This research has developed a new method using machine learning techniques for diabetes risk prediction. The method was developed through the use of clustering and prediction learning techniques. The method uses Singular Value Decomposition for missing value predictions, a Self-Organizing Map for clustering the data, STEPDISC for feature selection, and an ensemble of Deep Belief Network classifiers for diabetes mellitus prediction. The performance of the proposed method is compared with the previous prediction methods developed by machine learning techniques. The results reveal that the deployed method can accurately predict diabetes mellitus for a set of real-world datasets.

6.
Heliyon ; 9(4): e15258, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37101630

ABSTRACT

The analysis of Electroencephalography (EEG) signals has been an effective way of eye state identification. Its significance is highlighted by studies that examined the classification of eye states using machine learning techniques. In previous studies, supervised learning techniques have been widely used in EEG signals analysis for eye state classification. Their main goal has been the improvement of classification accuracy through the use of novel algorithms. The trade-off between classification accuracy and computation complexity is an important task in EEG signals analysis. In this paper, a hybrid method that can handle multivariate signals and non-linear is proposed with supervised and un-supervised learning to achieve a fast EEG eye state classification with high prediction accuracy to provide real-time decision-making applicability. We use the Learning Vector Quantization (LVQ) technique and bagged tree techniques. The method was evaluated on a real-world EEG dataset which included 14976 instances after the removal of outlier instances. Using LVQ, 8 clusters were generated from the data. The bagged tree was applied on 8 clusters and compared with other classifiers. Our experiments revealed that LVQ combined with the bagged tree provides the best results (Accuracy = 0.9431) compared with the bagged tree, CART (Classification And Regression Tree) (Accuracy = 0.8200), LDA (Linear Discriminant Analysis) (Accuracy = 0.7931), Random Trees (Accuracy = 0.8311), Naïve Bayes (Accuracy = 0.8331) and Multilayer Perceptron (Accuracy = 0.7718), which demonstrates the effectiveness of incorporating ensemble learning and clustering approaches in the analysis of EEG signals. We also provided the time complexity of the methods for prediction speed (Observation/Second). The result showed that LVQ + Bagged Tree provides the best result for prediction speed (58942 Obs/Sec) in relation to Bagged Tree (28453 Obs/Sec), CART (27784 Obs/Sec), LDA (26435 Obs/Sec), Random Trees (27921), Naïve Bayes (27217) and Multilayer Perceptron (24163).

7.
Bioengineering (Basel) ; 10(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36671690

ABSTRACT

The human gastrointestinal (GI) tract is an important part of the body. According to World Health Organization (WHO) research, GI tract infections kill 1.8 million people each year. In the year 2019, almost 5 million individuals were detected with gastrointestinal disease. Radiation therapy has the potential to improve cure rates in GI cancer patients. Radiation oncologists direct X-ray beams at the tumour while avoiding the stomach and intestines. The current objective is to direct the X-ray beam toward the malignancy while avoiding the stomach and intestines in order to improve dose delivery to the tumour. This study offered a technique for segmenting GI tract organs (small bowel, big intestine, and stomach) to assist radio oncologists to treat cancer patients more quickly and accurately. The suggested model is a U-Net model designed from scratch and used for the segmentation of a small size of images to extract the local features more efficiently. Furthermore, in the proposed model, six transfer learning models were employed as the backbone of the U-Net topology. The six transfer learning models used are Inception V3, SeResNet50, VGG19, DenseNet121, InceptionResNetV2, and EfficientNet B0. The suggested model was analysed with model loss, dice coefficient, and IoU. The results specify that the suggested model outperforms all transfer learning models, with performance parameter values as 0.122 model loss, 0.8854 dice coefficient, and 0.8819 IoU.

8.
Comput Biol Chem ; 102: 107788, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36410240

ABSTRACT

Predicting Unified Parkinson's Disease Rating Scale (UPDRS) in Total- UPDRS and Motor-UPDRS clinical scales is an important part of controlling PD. Computational intelligence approaches have been used effectively in the early diagnosis of PD by predicting UPDRS. In this research, we target to present a combined approach for PD diagnosis using an ensemble learning approach with the ability of online learning from clinical large datasets. The method is developed using Deep Belief Network (DBN) and Neuro-Fuzzy approaches. A clustering approach, Expectation-Maximization (EM), is used to handle large datasets. The Principle Component Analysis (PCA) technique is employed for noise removal from the data. The UPDRS prediction models are constructed for PD diagnosis. To handle the missing data, K-NN is used in the proposed method. We use incremental machine learning approaches to improve the efficiency of the proposed method. We assess our approach on a real-world PD dataset and the findings are assessed compared to other PD diagnosis approaches developed by machine learning techniques. The findings revealed that the approach can improve the UPDRS prediction accuracy and the time complexity of previous methods in handling large datasets.


Subject(s)
Deep Learning , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Early Diagnosis , Machine Learning
9.
Sensors (Basel) ; 22(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36146134

ABSTRACT

Resource constraint Consumer Internet of Things (CIoT) is controlled through gateway devices (e.g., smartphones, computers, etc.) that are connected to Mobile Edge Computing (MEC) servers or cloud regulated by a third party. Recently Machine Learning (ML) has been widely used in automation, consumer behavior analysis, device quality upgradation, etc. Typical ML predicts by analyzing customers' raw data in a centralized system which raises the security and privacy issues such as data leakage, privacy violation, single point of failure, etc. To overcome the problems, Federated Learning (FL) developed an initial solution to ensure services without sharing personal data. In FL, a centralized aggregator collaborates and makes an average for a global model used for the next round of training. However, the centralized aggregator raised the same issues, such as a single point of control leaking the updated model and interrupting the entire process. Additionally, research claims data can be retrieved from model parameters. Beyond that, since the Gateway (GW) device has full access to the raw data, it can also threaten the entire ecosystem. This research contributes a blockchain-controlled, edge intelligence federated learning framework for a distributed learning platform for CIoT. The federated learning platform allows collaborative learning with users' shared data, and the blockchain network replaces the centralized aggregator and ensures secure participation of gateway devices in the ecosystem. Furthermore, blockchain is trustless, immutable, and anonymous, encouraging CIoT end users to participate. We evaluated the framework and federated learning outcomes using the well-known Stanford Cars dataset. Experimental results prove the effectiveness of the proposed framework.


Subject(s)
Blockchain , Internet of Things , Computer Security , Ecosystem , Privacy
10.
J Comput Biol ; 27(6): 868-876, 2020 06.
Article in English | MEDLINE | ID: mdl-31553226

ABSTRACT

Next-generation sequencing technologies are producing genomic data at ever-increasing rates. It has become a challenge to store, transmit, and process the massive quantity of data, creating a vital need for a tool that compresses genomic data produced in a lossless manner, thus reducing storage space and speeding up data transmission. Data centers are adopting either of the two general-purpose genomic data compressors: gzip or bzip2. Both these use Huffman encoding, although they implement it in different ways. However, neither of these two takes advantage of properties of DNA data, such as the presence of a small alphabet and many repeats. Huffman encoding compression can be improved by exploiting DNA characteristics. Recently, it has been shown that Huffman encoding compression can be improved by creating an unbalanced Huffman tree (UHT), which demonstrates significant advances in compression over a standard Huffman tree used in both gzip and bzip2. However, the UHT created is greedy. This article proposes an improved nongreedy UHT (NUHT), a lossless nonreference-based fasta and multifasta compressor. We compare our algorithm with two well-known general-purpose compressors, gzip and bzip2, as well as with UHT, a DNA-specific compressor based on Huffman tree. Our algorithm outperforms all three in terms of compression ratio and is seven times faster than UHT.


Subject(s)
Computational Biology/methods , Sequence Analysis, DNA/methods , Algorithms , Chromosomes, Human, Pair 22/genetics , High-Throughput Nucleotide Sequencing , Humans , Neurospora/genetics , Saccharomyces/genetics , Software , Vibrio cholerae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...