Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Magn Reson Med ; 83(4): 1484-1498, 2020 04.
Article in English | MEDLINE | ID: mdl-31556163

ABSTRACT

PURPOSE: TRASE uses phase gradients in the RF transmit field to encode MRI data. A highly efficient twisted solenoid coil was proposed recently for TRASE imaging for transverse B0 geometries. This novel coil can be rotated to generate a phase gradient in any transverse direction, therefore, combining two such coils would double k-space coverage for single-axis encoding, resulting in higher spatial resolution. However, the strong inductive coupling between a pair of coaxial twisted solenoids must be overcome. METHODS: Here, we demonstrate that two concentric twisted solenoids, designed using previously described Biot-Savart calculations, can be geometrically decoupled by attaching to each a regular solenoid in series. The regular solenoid geometry resulting in minimization of mutual inductance was determined from simulations using the FastHenry2 tool. The effects on TRASE encoding performance due to the regular solenoids were assessed from simulations and experiments. RESULTS: The maximum resulting B1 magnitude and phase distortions were 3.7% and 4.6∘ , while a good isolation S12=-17.5 dB between the coil pair was obtained. TRASE experiments confirmed the double k-space coverage, and achieved a rapid spin echo train with 128 k-space points collected within 80 ms, allowing short T2 samples to be accurately imaged. CONCLUSIONS: This study demonstrates that a pair of twisted solenoid phase gradient RF coils can be geometrically decoupled. Advantages over active PIN diode decoupling include faster switching, lower hardware complexity, and scalability.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Equipment Design , Phantoms, Imaging
2.
Methods Protoc ; 1(4)2018 Oct 29.
Article in English | MEDLINE | ID: mdl-31164579

ABSTRACT

The sick preterm infant monitoring is an intriguing job that medical staff in Neonatal Intensive Care Units (NICU) must deal with on a daily basis. As a standards monitoring procedure, preterm infants are monitored via sensors and electrodes that are firmly attached to their fragile and delicate skin and connected to processing monitors. However, an alternative exists in contactless imaging to record such physiological signals (we call it as Physio-Markers), detecting superficial changes and internal structures activities which can be used independently of, or aligned with, conventional monitors. Countless advantages can be gained from unobtrusive monitoring not limited to: (1) quick data generation; (2) decreasing physical and direct contact with skin, which reduces skin breakdown and minimizes risk of infection; and (3) reduction of electrodes and probes connected to clinical monitors and attached to the skin, which allows greater body surface-area for better care. This review is an attempt to build a solid ground for and to provide a clear perspective of the potential clinical applications of technologies inside NICUs that use contactless imaging modalities such as Visible Light Imaging (VLI), Near Infrared Spectroscopy (NIRS), and Infrared Thermography (IRT).

SELECTION OF CITATIONS
SEARCH DETAIL