Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 21(26): 9556-62, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26014834

ABSTRACT

N-Alkyl ammonium resorcinarene chlorides, stabilized by an intricate array of hydrogen bonds leading to a cavitand-like structure, bind amides. The molecular recognition occurs through intermolecular hydrogen bonds between the carbonyl oxygen and the amide hydrogen of the guests and the cation-anion circular hydrogen-bonded seam of the hosts, as well as through CH⋅⋅⋅π interactions. The N-alkyl ammonium resorcinarene chlorides cooperatively bind a series of di-acetamides of varying spacer lengths ranging from three to seven carbons. Titration data fit either a 1:1 or 2:1 binding isotherm depending on the spacer lengths. Considering all the guests possess similar binding motifs, the first binding constants were similar (K1:10(2) M(-1)) for each host. The second binding constant was found to depend on the upper rim substituent of the host and the spacer length of the guests, with the optimum binding observed with the six-carbon spacer (K2:10(3) M(-2)). Short spacer lengths increase steric hindrance, whereas longer spacer lengths increase flexibility thus reducing cooperativity. The host with the rigid cyclohexyl upper rim showed stronger binding than the host with flexible benzyl arms. The cooperative binding of these divalent guests was studied in solution through (1)H NMR titration studies and supplemented by diffusion-ordered spectroscopy (DOSY), X-ray crystallography, and mass spectrometry.

2.
Chemistry ; 20(46): 15144-50, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25257765

ABSTRACT

N-alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra- and intermolecular hydrogen bonds that leads to cavitand-like structures. Depending on the upper-rim substituents, self-inclusion was observed in solution and in the solid state. The self-inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self-included dimers spontaneously reorganize to 1:1 host-guest complexes. These host compounds show an interesting ability to bind a series of N-alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C=O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl(-)) and ammonium (NH2(+)) cations of the hosts, and also through CH⋅⋅⋅π interactions between the hosts and guests. The self-included and host-guest complexes were studied by single-crystal X-ray diffraction, NMR titration, and mass spectrometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...