Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Biotechnol ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302682

ABSTRACT

This study focuses on the prevalence of Pseudomonas aeruginosa in various medical specimens. In addition, the investigates of this research shows the genetic analysis of pathogen-resistant isolates and chemical modifications to ciprofloxacin. A total of 225 specimens from men and women aged 30 to 60 were carefully collected and examined, including samples from wound, burn, urine, sputum, and ear samples. The data were obtained from AL Muthanna hospitals. PCR-RFLP and gene expression analysis were used to identify resistant strains and explore the genetic basis of antibiotic resistance. A ciprofloxacin derivative was synthesized and confirmed through FT-IR, 1H-NMR, and mass spectroscopy techniques then it was tested as antibacterial agent. Also, molecular docking study was conducted to predict the mechanism of action for the synthesized derivative. The results demonstrated that wound samples had the highest positive rate (33.7%) of P. aeruginosa isolates. The PCR-RFLP testing correlated ciprofloxacin resistance with gyrA gene mutation. Gene expression analysis revealed significant changes in the gyrA gene expression in comparison to the reference rpsL gene subsequent to exposure to the synthesized derivative. Furthermore, the molecular docking investigation illustrated the strategic positioning of the ciprofloxacin derivative within the DNA-binding site of the gyrA enzyme. The examination of genetic expression patterns manifested diverse effects attributed to the CIP derivative on P. aeruginosa, thus portraying it as a viable candidate in the quest for the development of novel antimicrobial agents. Ciprofloxacin derivative may offer new antimicrobial therapeutic options for treating Pseudomonas aeruginosa infections in wound specimens, addressing resistance and gyrA gene mutations.

2.
Gene ; 884: 147696, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37549857

ABSTRACT

The prevalence assessment of integrons among multidrug-resistant strains of Pseudomonas aeruginosa receives much-needed attention from this study, as we achieved our desired objective by conducting a thorough analysis on one hundred swabs obtained from burn and clinical cases at the hospitals present in Al Muthanna governorate during November of the year 2021 through to March of the year 2022. By implementing various methodologies encompassing the scrutiny of growth traits and cellular composition as well as executing biochemical assays, a total of 55 isolates were determined to exhibit the existence of P. aeruginosa. When cultured in Hifluoro agar media, Pseudomonas aeruginosa produced diverse hues; particularly noticeable was its blue-green colour. It was discovered through investigation that there were no intI2 and inti3 genes present in those isolated. Findings from this research disclosed that about one-fifth, or precisely twelve out of fifty-five P. aeruginosa strains screened, had an actively expressed Integrase I gene. The association between elevated rates of resistance to multiple antimicrobial agents and the existence of integrons is worth mentioning. Furthermore, the assemblage of isolates that were efficacious in the presence of integrons demonstrated an augmented resistance towards several frequently employed antibiotics like rifampicin and ceftazidime. In conclusion, it can be stated with confidence that a considerable occurrence of integrons can be observed in Pseudomonas aeruginosa strains that display resistance to numerous pharmaceutical agents. Additionally, the discovery of the intI1 gene in a considerable proportion of isolates underscores the effectiveness of integrons in conferring resistance to a variety of antimicrobial agents. These revelations supplement our insight into antibiotic-resistant mechanisms while also underscoring the necessity for viable strategies aimed at halting and preventing bacterial drug resistance.


Subject(s)
Burn Units , Pseudomonas Infections , Humans , Pseudomonas aeruginosa/genetics , Gene Flow , Iraq , Anti-Bacterial Agents/pharmacology , Hospitals , Integrons/genetics , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Drug Resistance, Multiple, Bacterial/genetics
3.
J Antibiot (Tokyo) ; 75(12): 691-697, 2022 12.
Article in English | MEDLINE | ID: mdl-36195749

ABSTRACT

The goal of this work was to systematically characterize and detect class 1, 2, and 3 integrons with many antibiotic resistance A. baumannii strains collected from a clinical environment in Iraq's Al-Muthanna hospitals. In this investigation, 24 non-replicated clinical strains of A. baumannii were evaluated using Chrome agar as a selective medium and PCR of the rplB gene. The clonal relatedness of the isolates to class 1 integron was evaluated using a PCR technique. The prevalence of class 1 integron was detected by PCR in only 12 clones of A. baumannii followed by HinfI digestion analysis showing three identical bands at 160 bp, 1350 bp, and 870 bp. In addition, PCR sequencing confirmed the presence of gene cassette arrays consisting of aacA4-catB8-aadA1 (100%) in class 1 integron. The sequence analysis of the integron shows 97.87 identity with A. baumannii isolates from Australia (GenBank accession number CP054302) among A. baumannii isolates. The blast analysis of this class I integron showed that the presence of the intI1, aacA4-catB8-aadA1 genes can considerably boost the acquisition of MDR phenotypes in A. baumannii isolates. We concluded that antibiotics of many types are widely used. The presence of integrons in A. baumannii is concerning for public health. In the clinical setting, it appears that the class 1 integron can be used as a predictive biomarker for the presence of MDR phenotypes. In these bacteria, however, the integron does not possess carbapenemases genes.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Integrons/genetics , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Iraq/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
4.
Anaerobe ; 70: 102379, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33940167

ABSTRACT

BACKGROUND: Sporulation is a complex cell differentiation programme shared by many members of the Firmicutes, the end result of which is a highly resistant, metabolically inert spore that can survive harsh environmental insults. Clostridioides difficile spores are essential for transmission of disease and are also required for recurrent infection. However, the molecular basis of sporulation is poorly understood, despite parallels with the well-studied Bacillus subtilis system. The spore envelope consists of multiple protective layers, one of which is a specialised layer of peptidoglycan, called the cortex, that is essential for the resistant properties of the spore. We set out to identify the enzymes required for synthesis of cortex peptidoglycan in C. difficile. METHODS: Bioinformatic analysis of the C. difficile genome to identify putative homologues of Bacillus subtilis spoVD was combined with directed mutagenesis and microscopy to identify and characterise cortex-specific PBP activity. RESULTS: Deletion of CDR20291_2544 (SpoVDCd) abrogated spore formation and this phenotype was completely restored by complementation in cis. Analysis of SpoVDCd revealed a three domain structure, consisting of dimerization, transpeptidase and PASTA domains, very similar to B. subtilis SpoVD. Complementation with SpoVDCd domain mutants demonstrated that the PASTA domain was dispensable for formation of morphologically normal spores. SpoVDCd was also seen to localise to the developing spore by super-resolution confocal microscopy. CONCLUSIONS: We have identified and characterised a cortex specific PBP in C. difficile. This is the first characterisation of a cortex-specific PBP in C. difficile and begins the process of unravelling cortex biogenesis in this important pathogen.


Subject(s)
Bacterial Proteins/metabolism , Clostridioides difficile/metabolism , Penicillin-Binding Proteins/metabolism , Spores, Bacterial/metabolism , Bacterial Proteins/genetics , Cell Wall/chemistry , Cell Wall/genetics , Cell Wall/metabolism , Clostridioides difficile/chemistry , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Hot Temperature , Penicillin-Binding Proteins/genetics , Spores, Bacterial/genetics , Spores, Bacterial/growth & development
5.
Microbiol Resour Announc ; 10(4)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509990

ABSTRACT

The coding-complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain isolated from an Iraqi patient was sequenced for the first-time using Illumina MiSeq technology. There was a D614G mutation in the spike protein-coding sequence. This report is valuable for better understanding the spread of the virus in Iraq.

SELECTION OF CITATIONS
SEARCH DETAIL
...