Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36365875

ABSTRACT

This paper aims to develop a new mobile robot path planning algorithm, called generalized laser simulator (GLS), for navigating autonomously mobile robots in the presence of static and dynamic obstacles. This algorithm enables a mobile robot to identify a feasible path while finding the target and avoiding obstacles while moving in complex regions. An optimal path between the start and target point is found by forming a wave of points in all directions towards the target position considering target minimum and border maximum distance principles. The algorithm will select the minimum path from the candidate points to target while avoiding obstacles. The obstacle borders are regarded as the environment's borders for static obstacle avoidance. However, once dynamic obstacles appear in front of the GLS waves, the system detects them as new dynamic obstacle borders. Several experiments were carried out to validate the effectiveness and practicality of the GLS algorithm, including path-planning experiments in the presence of obstacles in a complex dynamic environment. The findings indicate that the robot could successfully find the correct path while avoiding obstacles. The proposed method is compared to other popular methods in terms of speed and path length in both real and simulated environments. According to the results, the GLS algorithm outperformed the original laser simulator (LS) method in path and success rate. With application of the all-direction border scan, it outperforms the A-star (A*) and PRM algorithms and provides safer and shorter paths. Furthermore, the path planning approach was validated for local planning in simulation and real-world tests, in which the proposed method produced the best path compared to the original LS algorithm.

2.
Biomedicines ; 10(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359235

ABSTRACT

Recently, artificial intelligence (AI) including machine learning (ML) and deep learning (DL) models has been commonly employed for the automated disease diagnosis process. AI in biological and biomedical imaging is an emerging area and will be a future trend in the field. At the same time, biomedical images can be used for the classification of Rheumatoid arthritis (RA) diseases. RA is an autoimmune illness that affects the musculoskeletal system causing systemic, inflammatory and chronic effects. The disease frequently becomes progressive and decreases physical function, causing articular damage, suffering, and fatigue. After a time, RA causes harm to the cartilage of the joints and bones, weakens the tendons and joints, and finally causes joint destruction. Sensors (thermal infrared camera sensor, accelerometers and wearable sensors) are more commonly employed to collect data for RA. This study develops an Automated Rheumatoid Arthritis Classification using an Arithmetic Optimization Algorithm with Deep Learning (ARAC-AOADL) model. The goal of the presented ARAC-AOADL technique lies in the classification of health disorders depending upon RA and orthopaedics. Primarily, the presented ARAC-AOADL technique pre-processes the input images by median filtering (MF) technique. Then, the ARAC-AOADL technique uses AOA with an enhanced capsule network (ECN) model to produce feature vectors. For RA classification, the ARAC-AOADL technique uses a multi-kernel extreme learning machine (MKELM) model. The experimental result analysis of the ARAC-AOADL technique on a benchmark dataset reported a maximum accuracy of 98.57%. Therefore, the ARAC-AOADL technique can be employed for accurate and timely RA classification.

3.
Healthcare (Basel) ; 11(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36611573

ABSTRACT

Oral cancer is considered one of the most common cancer types in several counties. Earlier-stage identification is essential for better prognosis, treatment, and survival. To enhance precision medicine, Internet of Medical Things (IoMT) and deep learning (DL) models can be developed for automated oral cancer classification to improve detection rate and decrease cancer-specific mortality. This article focuses on the design of an optimal Inception-Deep Convolution Neural Network for Oral Potentially Malignant Disorder Detection (OIDCNN-OPMDD) technique in the IoMT environment. The presented OIDCNN-OPMDD technique mainly concentrates on identifying and classifying oral cancer by using an IoMT device-based data collection process. In this study, the feature extraction and classification process are performed using the IDCNN model, which integrates the Inception module with DCNN. To enhance the classification performance of the IDCNN model, the moth flame optimization (MFO) technique can be employed. The experimental results of the OIDCNN-OPMDD technique are investigated, and the results are inspected under specific measures. The experimental outcome pointed out the enhanced performance of the OIDCNN-OPMDD model over other DL models.

SELECTION OF CITATIONS
SEARCH DETAIL
...