Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 40(14): 2496-2508, 2021 04.
Article in English | MEDLINE | ID: mdl-33674744

ABSTRACT

Targeting PARP1 [Poly(ADP-Ribose) Polymerase 1] for synthetic lethality is a new strategy for BRCA germ-line mutated or platinum sensitive ovarian cancers. However, not all patients respond due to intrinsic or acquired resistance to PARP1 inhibitor. Development of alternative synthetic lethality approaches is a high priority. DNA polymerase ß (Polß), a critical player in base excision repair (BER), interacts with PARP1 during DNA repair. Here we show that polß deficiency is a predictor of platinum sensitivity in human ovarian tumours. Polß depletion not only increased platinum sensitivity but also reduced invasion, migration and impaired EMT (epithelial to mesenchymal transition) of ovarian cancer cells. Polß small molecular inhibitors (Pamoic acid and NSC666719) were selectively toxic to BRCA2 deficient cells and associated with double-strand breaks (DSB) accumulation, cell cycle arrest and increased apoptosis. Interestingly, PARG [Poly(ADP-Ribose) Glycohydrolase] inhibitor (PDD00017273) [but not PARP1 inhibitor (Olaparib)] was synthetically lethal in polß deficient cells. Selective toxicity to PDD00017273 was associated with poly (ADP-ribose) accumulation, reduced nicotinamide adenine dinucleotide (NAD+) level, DSB accumulation, cell cycle arrest and increased apoptosis. In human tumours, polß-PARG co-expression adversely impacted survival in patients. Our data provide evidence that polß targeting is a novel strategy and warrants further pharmaceutical development in epithelial ovarian cancers.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , DNA Polymerase beta/metabolism , Platinum/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Female , Humans , Transfection
2.
Biomedicines ; 9(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435622

ABSTRACT

Platinum resistance seriously impacts on the survival outcomes of patients with ovarian cancers. Platinum-induced DNA damage is processed through DNA repair. NBS1 is a key DNA repair protein. Here, we evaluated the role of NBS1 in ovarian cancers. NBS1 expression was investigated in clinical cohorts (protein level (n = 331) and at the transcriptomic level (n = 1259)). Pre-clinically, sub-cellular localization of NBS1 at baseline and following cisplatin therapy was tested in platinum resistant (A2780cis, PEO4) and sensitive (A2780, PEO1) ovarian cancer cells. NBS1 was depleted and cisplatin sensitivity was investigated in A2780cis and PEO4 cells. Nuclear NBS1 overexpression was associated with platinum resistance (p = 0.0001). In univariate and multivariate analysis, nuclear NBS1 overexpression was associated with progression free survival (PFS) (p-values = 0.003 and 0.017, respectively) and overall survival (OS) (p-values = 0.035 and 0.009, respectively). NBS1 mRNA overexpression was linked with poor PFS (p = 0.011). Pre-clinically, following cisplatin treatment, we observed nuclear localization of NBS1 in A2780cis and PEO4 compared to A2780 and PEO1 cells. NBS1 depletion increased cisplatin cytotoxicity, which was associated with accumulation of double strand breaks (DSBs), S-phase cell cycle arrest, and increased apoptosis. NBS1 is a predictor of platinum sensitivity and could aid stratification of ovarian cancer therapy.

3.
Mol Biomed ; 1(1): 19, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-35006434

ABSTRACT

Intrinsic or acquired resistance seriously limits the use of platinating agents in advanced epithelial ovarian cancers. Increased DNA repair capacity is a key route to platinum resistance. RAD50 is a critical component of the MRN complex, a 'first responder' to DNA damage and essential for the repair of DSBs and stalled replication forks. We hypothesised a role for RAD50 in ovarian cancer pathogenesis and therapeutics. Clinicopathological significance of RAD50 expression was evaluated in clinical cohorts of ovarian cancer at the protein level (n = 331) and at the transcriptomic level (n = 1259). Sub-cellular localization of RAD50 at baseline and following cisplatin therapy was tested in platinum resistant (A2780cis, PEO4) and sensitive (A2780, PEO1) ovarian cancer cells. RAD50 was depleted and cisplatin sensitivity was investigated in A2780cis and PEO4 cells. RAD50 deficiency was associated with better progression free survival (PFS) at the protein (p = 0.006) and transcriptomic level (p < 0.001). Basal level of RAD50 was higher in platinum resistant cells. Following cisplatin treatment, increased nuclear localization of RAD50 was evident in A2780cis and PEO4 compared to A2780 and PEO1 cells. RAD50 depletion using siRNAs in A2780cis and PEO4 cells increased cisplatin cytotoxicity, which was associated with accumulation of DSBs, S-phase cell cycle arrest and increased apoptosis. We provide evidence that RAD50 deficiency is a predictor of platinum sensitivity. RAD50 expression-based stratification and personalization could be viable clinical strategy in ovarian cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...