Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int Immunopharmacol ; 113(Pt A): 109347, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36332451

ABSTRACT

Lymphocytes infiltration is a key mechanism that drives asthma lung inflammation. Our previous results demonstrated a significant increase in the frequency and persistence of central memory T (TCM) cells in inflamed lung tissue. This could be due to an increase in the infiltration of TCM in the lung tissue, or the possible differentiation of lung effector memory T (TEM) cells into TCM during lung inflammation. Thus, targeting the accumulation of memory T cells provides a potential approach for asthma treatment. Simvastatin and other statins were shown to impact both the structural and immune lung cells, presenting a distinct immunomodulatory effect on T lymphocyte activation, infiltration, and function. Therefore, we sought to evaluate the effect of simvastatin on the frequency and function of CD4 and CD8 TEM and TCM cells in an ovalbumin (OVA)-induced mouse model of asthma. Simvastatin treatment significantly attenuated the infiltration of both TEM and TCM memory subtypes, along with their production of IL-4 and IL-13 cytokines in a T helper 2 (Th2) OVA-sensitized mouse model. Furthermore, we detected a reduction in ICAM-1 and VCAM-1 levels in the lung homogenate of OVA-sensitized and challenged mice, as well as in human umbilical vein endothelial cells (HUVECs) following treatment with simvastatin. The reduction in leucocyte homing receptors following simvastatin treatment might have contributed to the observed decrease in infiltrated memory T cell numbers. In conclusion, this study demonstrated how statin drug may attenuate allergic asthma lung inflammation by targeting memory T cells and reducing their numbers, whilst limiting their cytokine production at the site of inflammation. Longer clinical trials are required to assess the effectiveness and safety of statin treatment in different asthma phenotypes.


Subject(s)
Asthma , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mice , Humans , Animals , Ovalbumin/therapeutic use , Simvastatin/pharmacology , Simvastatin/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Endothelial Cells , Mice, Inbred BALB C , Lung , Inflammation/drug therapy , Disease Models, Animal , Th2 Cells , Bronchoalveolar Lavage Fluid
2.
Int Arch Allergy Immunol ; 183(2): 127-141, 2022.
Article in English | MEDLINE | ID: mdl-34818243

ABSTRACT

Memory T cells play a central role in regulating inflammatory responses during asthma. However, tissue distribution of effector memory (TEM) and central memory (TCM) T-cell subtypes, their differentiation, and their contribution to the persistence of lung tissue inflammation during asthma are not well understood. Interestingly, an increase in survival and persistence of memory T cells was reported in asthmatic lungs, which may suggest a shift toward the more persistent TCM phenotype. In this report, we investigated the differential distribution of memory T-cell subtypes during allergic lung inflammation and the mechanism regulating that. Using an OVA-sensitized asthma mouse model, we observed a significant increase in the frequency of TCM cells in inflamed lungs compared to healthy controls. Interestingly, adoptive transfer techniques confirmed substantial infiltration of TCM cells to lung tissues during allergic airway inflammation. Expression levels of TCM homing receptors, CD34 and GlyCAM-1, were also significantly upregulated in the lung tissues of OVA-sensitized mice, which may facilitate the increased TCM infiltration into inflamed lungs. Moreover, a substantial increase in the relative expression of TCM profile-associated genes (EOMES, BCL-6, ID3, TCF-7, BCL-2, BIM, and BMI-1) was noted for TEM cells during lung inflammation, suggesting a shift for TEM into the TCM state. To our knowledge, this is the first study to report an increased infiltration of TCM cells into inflamed lung tissues and to suggest differentiation of TEM to TCM cells in these tissues. Therapeutic interference at TCM infiltration or differentiations could constitute an alternative treatment approach for lung inflammation.


Subject(s)
Hypersensitivity/etiology , Hypersensitivity/metabolism , Lung/immunology , Lung/metabolism , Memory T Cells/immunology , Memory T Cells/metabolism , Animals , Asthma/etiology , Asthma/metabolism , Asthma/pathology , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Female , Gene Expression , Hypersensitivity/pathology , Immunohistochemistry , Immunophenotyping , Inflammation Mediators , Lung/pathology , Lymphocyte Count , Mice
3.
Expert Rev Respir Med ; 16(1): 17-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34663161

ABSTRACT

INTRODUCTION: Asthma is a chronic inflammatory disease of the airways, which is usually characterized by remodeling, hyperresponsiveness and episodic obstruction of the airways. The underlying chronic airway inflammation leads to pathological restructuring of both the large and small airways. Since the effects of current asthma medications on airway remodeling have been met with contradictions, many therapeutic agents have been redirected from their primary use for the treatment of asthma. Such treatments, which could target several signaling molecules implicated in the inflammatory and airway remodeling processes of asthma, would be an ideal choice. AREAS COVERED: Statins are effective serum cholesterol-lowering agents that were found to have potential anti-inflammatory and anti-remodeling properties. Literature search was done for the past 10 years to include research and review articles in the field of statins and asthma complications. In this review, we discuss the role of statins in airway tissue remodeling and their potential therapeutic modalities in asthma. EXPERT OPINION: With improved understanding of the role of statins in airway remodeling and inflammation, statins represent a potential therapeutic option for various asthma phenotypes. Further research is warranted to optimize statins for asthma therapy through inhalation as a possible route of administration.


Subject(s)
Asthma , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Administration, Inhalation , Airway Remodeling , Asthma/drug therapy , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammation
4.
Clin Transl Sci ; 13(6): 1048-1054, 2020 11.
Article in English | MEDLINE | ID: mdl-32799423

ABSTRACT

Besides the respiratory system, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection was shown to affect other essential organs such as the kidneys. Early kidney involvement during the course of infection was associated with worse outcomes, which could be attributed to the direct SARS-CoV-2 infection of kidney cells. In this study, the effect of commonly used medications on the expression of SARS-CoV-2 receptor, angiotensin-converting enzyme (ACE)2, and TMPRSS2 protein in kidney tissues was evaluated. This was done by in silico analyses of publicly available transcriptomic databases of kidney tissues of rats treated with multiple doses of commonly used medications. Of 59 tested medications, 56% modified ACE2 expression, whereas 24% modified TMPRSS2 expression. ACE2 was increased with only a few of the tested medication groups, namely the renin-angiotensin inhibitors, such as enalapril, antibacterial agents, such as nitrofurantoin, and the proton pump inhibitor, omeprazole. The majority of the other medications decreased ACE2 expression to variable degrees with allopurinol and cisplatin causing the most noticeable downregulation. The expression level of TMPRSS2 was increased with a number of medications, such as diclofenac, furosemide, and dexamethasone, whereas other medications, such as allopurinol, suppressed the expression of this gene. The prolonged exposure to combinations of these medications could regulate the expression of ACE2 and TMPRSS2 in a way that may affect kidney susceptibility to SARS-CoV-2 infection. Data presented here suggest that we should be vigilant about the potential effects of commonly used medications on kidney tissue expression of ACE2 and TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/complications , Kidney/metabolism , Receptors, Coronavirus/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Animals , Gene Expression Regulation/drug effects , Rats
5.
Mol Ther Methods Clin Dev ; 18: 1-6, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32537478

ABSTRACT

It has been reported that angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are the main cell entry proteins for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and play a critical role in causing coronavirus disease 2019 (COVID-19). To investigate the expression level of these SARS-CoV-2 host cell entry genes in the lung airway, we used public gene expression datasets. We have found a differential expression of ACE2 and TMPRSS2 in nasal and bronchial airways relative to age and diseases status. Children were found to have significantly lower expression of COVID-19 receptors in the upper and lower airways (nasal and bronchial). Moreover, the lung airway expression of both ACE2 and TMPRSS2 was found to be significantly upregulated in smokers compared with non-smokers, and in patients with chronic obstructive pulmonary disease (COPD) compared with healthy subjects. No difference was observed in the blood expression levels of ACE2 and TMPRSS2 between children and adults, or in COPD or diabetic patients. However, a significant increase in blood expression levels of these genes was observed in patients with essential hypertension, whereas only ACE2 was upregulated in the blood of asthmatics. These results suggest that the observed difference in COVID-19 severity between children and adults could, in part, be attributed to the difference in ACE2 and TMPRSS2 airways tissue expression levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...