Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702622

ABSTRACT

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Subject(s)
Biofilms , Catfishes , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Silver/chemistry , Silver/pharmacology , Animals , Humans , Mucus/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Vero Cells , Fish Proteins/pharmacology , Fish Proteins/chemistry , Fish Proteins/metabolism , Chlorocebus aethiops , Cell Line, Tumor , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Candida albicans/drug effects , Epidermis/metabolism
2.
Arch Microbiol ; 206(3): 103, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358529

ABSTRACT

Heavy metals (HMs) like Zn, Cu, Pb, Ni, Cd, and Hg, among others, play a role in several environmental problems. The marine environment is polluted by several contaminants, such as HMs. A variety of physico-chemical methods usually available for sanitation HMs remediation suffer from either limitation. Bioremediation is a promising way of dealing with HMs pollution. Microbes have the ability with various potencies to resist HMs tension. The current review discusses the main sources and influences of HMs, the role of marine microorganisms in HMs bioremediation, as well as the microbial mechanisms for HMs detoxification and transformation. This review paper aims to provide an overview of the bioremediation technologies that are currently available for the removal of HMs ions from industrial and urban effluent by aquatic organisms such as bacteria, fungi, and microalgae, particularly those that are isolated from marine areas. The primary goals are to outline various studies and offer helpful information about the most important aspects of the bioelimination techniques. The biotreatment practices have been primarily divided into three techniques based on this topic. They are biosorption, bioaccumulation, bioleaching, and biotransformation. This article gives the brief view on the research studies about bioremediation of HMs using marine microorganisms. The current review also deals with the critical issues and recent studies based on the HMs biodetoxification using aquatic microorganisms.


Subject(s)
Metals, Heavy , Microalgae , Biodegradation, Environmental , Industry
3.
Fish Shellfish Immunol ; 98: 420-428, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32001349

ABSTRACT

The present study was conducted to investigate the effects of CoQ10 dietary supplementation on growth performance, feed utilization, blood profile, immune response, and oxidative status of Nile tilapia (12.4 ± 0.11 g, initial body weight). Five experimental diets were formulated containing CoQ10 at levels of 0, 10, 20, 30, 40 mg kg-1 diet (D1, D2, D3, D4, and D5, respectively). The results of a 56-days feeding trial showed that, significantly higher weight gain % (WG %), specific growth rate (SGR), feed intake (FI), and feed efficiency ratio (FER) were recorded in fish groups fed diets supplemented with different levels of CoQ10 than fish fed the control diet, while survival rate (SR%), condition factor (CF), hepatosomatic index (HSI) and viscerasomatic index (VSI) showed no obvious differences (P > 0.05) among all experimental groups. The highest activities of digestive enzymes (protease, amylase, and lipase) were recorded in D3, D4, and D5 groups. Moreover, blood status of all experimental fish was within normal rates and significant alterations were only in the case of glucose, cortisol, total cholesterol (T-Chol), triglycerides, and total protein (TP), where fish fed on D3, D4 and D5 diets exhibited lower values of glucose, cortisol, T-Chol, and triglycerides and higher values of TP. Furthermore, the lowest values of immune response [lysozyme, bactericidal, respiratory burst (NBT), and alternative complement pathway activities (ACP)], antioxidant capacity and oxidative related genes expressions [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)] resulted from feeding on the basal diet (D1) compared to CoQ10 diets, especially with its high levels {≥20 mg kg-1 diet (D3, D4, and D5)} in most cases. In conclusion, our results suggest that the use of ≥20 mg CoQ10 kg-1 diet improves the growth and health being of Nile tilapia.


Subject(s)
Cichlids/metabolism , Dietary Supplements , Digestion/drug effects , Oxidative Stress/drug effects , Ubiquinone/analogs & derivatives , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Enzymes/metabolism , Histocompatibility Antigens Class II , Ubiquinone/administration & dosage , Ubiquinone/pharmacology
4.
Environ Monit Assess ; 191(6): 367, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31093780

ABSTRACT

The biological marine system in the Mediterranean Sea off Alexandria, Egypt, was investigated to recognise its biodiversity and the relations among "ichthyofauna, invertebrates, and benthic" cover including biota and flora, as well as seabed bathymetry during 2017 using a multi-seasonal surveys by the commercial bottom trawler. Moreover, zooplanktonic community from the water column was also collected to support the picture of the biodiversity in the investigated area. The identified species were 94 fishes, 64 invertebrates, 6 benthic flora, and 304 zooplanktonic species. The ichthyofauna included 5 Chondrichthyes species (5.3% of the fish species), while Osteichthyes fishes were 89 species (94.7%) belonging to 48 families and 72 genera. The most abundant family was Sparidae (13 species). The highest abundance of fishes occurred in the summer (68 fish species 72.34%), while the lowest abundance occurred in the spring (49 species, 52.13%). Regarding the demersal and benthic biota, the most abundant phylum was Mollusca (31 species) and represented by three classes (Bivalvia, Cephalopoda, and Gastropoda). Gastropoda was the most abundant class (18 species), while the lowest Phyla was Chordata (1 species of Ascidians) and Annelida (1 species). The number of lessepsian fish species were 17 (18.1%) of the total number of species caught by the bottom trawl net. In addition, this work provided new records Aulopareia unicolor (F): Gobiidae) for the area for first time and considered the second time in Egypt. The benthic flora was represented by 6 species belonging to three phyla (Tracheophyta, Chlorophyta, and Rhodophyta). Sea grasses were represented by three species (Posidonia oceanica, Cymodocea nodosa, and Halophila stipulacea). The highest abundance of benthic species occurred in the summer (53 species with 75.7%), while the lowest one was in autumn (27 species, 38.6%). Geologically, the fishing ground constituted of hard rocks to very fine silt. The eastern part of the study area includes terrigenous Nile sediment origin, while the western side has biocalcareous sediment with shell fragments richness, coastal limestone ridges origin. The continental shelf, which runs along the study area, is portrayed by a 200-m contour line. In the water column, zooplanktonic community was represented by 304 taxa, belonging to 12 phyla, 6 phyla (Arthropoda, Tintinnida, Chordata "fish eggs and larvae", Cnidaria, Foraminifera, and Radiozoa) were dominant. Copepods were the dominant group (71.59%); its annual average abundance was 1271 ind./m3. Its most diversified season was the winter (175 No/m3.) and its average abundance was 1892.9 ind./m3. However, in spring, 118 species were recorded presenting the highest average abundance (2419.4 ind./m3). The lowest diversified season was summer (85 organisms) with density of 1150 ind./m3. The present work offers updated data regarding the marine biodiversity in Egypt, enriches the gaps in the bibliography in the Eastern Mediterranean, and gives preliminary list of species and biodiversity of bottom trawl combined with the interaction with other biosystems and features of fishing ground. These data could be used to monitor evaluate the impact of bottom trawl on the fisheries habitats and changing in ecosystems. Also, it could be used as constructive step to manage or protect such area in combination with other. It is recommended to fulfil the need for more and detailed studies in all areas by different gears to cover the gaps in marine biodiversity data.


Subject(s)
Aquatic Organisms/classification , Environmental Monitoring/methods , Animals , Aquatic Organisms/growth & development , Biodiversity , Egypt , Mediterranean Sea , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...