Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(50): 505704, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31499484

ABSTRACT

The present work reports nanocomposite of CdSe/V2O5 core-shell quantum dots with reduced graphene oxide (rGO-V-CdSe), as an efficient lightweight electromagnetic wave shielding material, synthesized by a simplistic solvothermal approach. The as-synthesized nanocomposite was analyzed for its structural, compositional and morphological features by x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The measurement of complex permittivity/permeability and total shielding efficiency of the as-synthesized samples has been done in a wide frequency range of 8-12 GHz (X-band). Compared to rGO and rGO-CdSe, rGO-V-CdSe nanocomposite exhibits significantly enhanced EMI shielding properties in terms of both dielectric loss and total shielding SE T . The high value of real permittivity (average ε'∼70) and the overall shielding effectiveness up to ∼38 dB have been recorded for rGO-V-CdSe nanocomposite. The studies also infer that the absorption contributes more in total shielding than reflection. The high value of dielectric loss and shielding effectiveness could also be attributed to the presence of various defects leading to dipolar and interfacial polarizations. The excellent EMI shielding properties of the nanocomposite in GHz frequency range (X-band) pave an intuitive way for fabricating a versatile EMI shielding nanocomposite material for applications.

2.
J Colloid Interface Sci ; 515: 160-171, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29335183

ABSTRACT

Palladium nanoparticles decorated reduced graphene oxide (Pd-rGO) and palladium nanoparticles intercalated inside nitrogen doped reduced graphene oxide (Pd-NrGO) hybrids have been synthesized by applying a very simple, fast and economic route using microwave-assisted in-situ reduction and exfoliation method. The Pd-NrGO hybrids materials show good activity as catalyst for ethanol electro oxidation for direct ethanol fuel cells (DEFCs) as compared to Pd-rGO hybrids. The enhanced direct ethanol fuel cell can serve as alternative to fossil fuels because it is renewable and environmentally-friendly with a high energy conversion efficiency and low pollutant emission. As proof of concept, the electrocatalytic activity of Pd-NrGO hybrid material was accessed by cyclic voltammetry in presence of ethanol to evaluate its applicability in direct-ethanol fuel cells (DEFCs). The Pd-NrGO catalyst presented higher electro active surface area (∼6.3 m2 g-1) for ethanol electro-oxidation when compared to Pd-rGO hybrids (∼3.7 m2 g-1). Despite the smaller catalytic activity of Pd-NrGO, which was attributed to the lower exfoliation rate of this material in relation to the Pd-rGO, Pd-NrGO showed to be very promising and its catalytic activity can be further improved by tuning the synthesis parameters to increase the exfoliation rate.

3.
Sci Rep ; 5: 11546, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26100466

ABSTRACT

Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.

4.
Nanotechnology ; 24(15): 155301, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23519310

ABSTRACT

The accuracy of thermal conductivity measurements by the micro-Raman technique for suspended multi-layer graphene flakes has been shown to depend critically on the quality of the thermal contacts between the flakes and the metal electrodes used as the heat sink. The quality of the contacts can be improved by nonlocal laser annealing at increased power. The improvement of the thermal contacts to initially rough metal electrodes is attributed to local melting of the metal surface under laser heating, and increased area of real metal-graphene contact. Improvement of the thermal contacts between multi-layer graphene and a silicon oxide surface was also observed, with more efficient heat transfer from graphene as compared with the graphene-metal case.

SELECTION OF CITATIONS
SEARCH DETAIL
...