Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 126(4): 041103, 2007 Jan 28.
Article in English | MEDLINE | ID: mdl-17286454

ABSTRACT

We present the first results from a novel experimental approach to the measurement of state-to-state differential scattering cross-sections for inelastic scattering of electronically excited CN A(2)Pi with Ar. Photodissociation of ICN with linearly polarized 266 nm radiation generates CN X(2)Sigma(+) (upsilon(")=0,J(")) with a near mono-energetic speed distribution and large anisotropy. Saturated optical pumping of the nascent CN X(2)Sigma(+) transfers this speed distribution without distortion to selected rotational quantum states of the A(2)Pi (upsilon(')=4) level. The products of rotational energy transfer within the A(2)Pi (upsilon(')=4) level into the J(')=0.5, F(2), f, state are probed using frequency modulated stimulated emission spectroscopy on the A-X (4,2) band with a single frequency external cavity tunable diode laser. Doppler profiles of transitions from individual rotational, spin-orbit and lambda doublet specific levels are acquired for different geometrical arrangements of photolysis polarization and probe propagation directions. The resulting Doppler profiles, which for this J(')=0.5 state cannot display a rotational angular momentum alignment, are combined to yield composite Doppler profiles depending on speed and translational anisotropy, which are analyzed to determine fully state-to-state resolved differential scattering cross-sections.

2.
Phys Chem Chem Phys ; 9(6): 747-54, 2007 Feb 14.
Article in English | MEDLINE | ID: mdl-17268687

ABSTRACT

Polarized laser photolysis of ICN is combined with saturated optical pumping to prepare state-selected CN Alpha(2)Pi (nu' = 4, J = 0.5, F(2), f) with a well-defined anisotropic superthermal speed distribution. The collisional evolution of the prepared state is observed by Doppler-resolved Frequency Modulated (FM) spectroscopy via stimulated emission on the CN Alpha(2)Pi-Chi(2)Sigma(+) (4,2) band. The phenomenological rate constants for removal of the prepared state in collisions with He, Ar, N(2) and O(2) are reported. The observed collision cross-sections are consistent with attractive forces contributing significantly for all the colliders with the exception of He. The collisional evolution of the prepared velocity distribution demonstrates that no significant back-transfer into the prepared level occurs, and that any elastic scattering is strongly in the forward hemisphere.


Subject(s)
Argon/chemistry , Cyanides/chemistry , Helium/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Quantum Theory , Free Radicals/chemistry , Sensitivity and Specificity , Spectrophotometry/methods , Time Factors
3.
Article in English | MEDLINE | ID: mdl-16495130

ABSTRACT

We describe the application of frequency modulated spectroscopy (FMS) with an external cavity tuneable diode laser to the study of the scalar and vector properties of inelastic collisions. CN X(2)Sigma(+) radicals are produced by polarized photodissociation of ICN at 266 nm, with a sharp velocity and rotational angular momentum distribution. The collisional evolution of the distribution is observed via sub-Doppler FMS on the A(2)Pi-X(2)Sigma(+) (2,0) band. He, Ar, N(2), O(2) and CO(2) were studied as collider gases. Doppler profiles were acquired in different experimental geometries of photolysis and probe laser propagation and polarization, and on different spectroscopic branches. These were combined to give composite Doppler profiles from which the speed distributions and specific speed-dependent vector correlations could be determined. The angular scattering dynamics with species other than He are found to be very similar, dominated by backward scattering which accompanies transfer of energy between rotation and translation. The kinematics of collisions with He are not conducive to the determination of differential scattering and angular momentum polarization correlations. Angular momentum correlations show interesting differences between reactive and non-reactive colliders. We propose that this reflects differences in the potential energy surfaces, in particular, the nature and depth of attractive potential wells.


Subject(s)
Gases/chemistry , Spectrum Analysis , Biomechanical Phenomena , Fiber Optic Technology/instrumentation , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL
...