Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(10): 26338-26356, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36369437

ABSTRACT

Intensive anthropogenic activities along the coastal plains of Andhra Pradesh (such as urbanisation, agriculture and aquaculture) rely extensively on coastal fresh groundwater resources that are pumped at unsustainable rates causing groundwater decline and water quality problems due to saline water intrusion. Hydrogeological studies are imperative to implement groundwater conservation strategies in coastal Andhra Pradesh, which is experiencing a severe freshwater shortage due to overexploitation and saline water intrusion as well as clean water loss through the aquifer system close to the coastal plains. An attempt is made in this study to demarcate the submarine groundwater discharge (SGD) and saline water intrusion (SWI) zones adopting a three-tier validation system, i.e. groundwater dynamic, LANDSAT resultant sea surface temperature (SST) variance and site-specific water characteristics along the southeast coast of Andhra Pradesh, India. A total of 234 water samples (139 porewater, 31 groundwater and 64 seawater samples) were evaluated along ~ 450 km southeast coastline of Andhra Pradesh. In situ porewater physio-chemical parameters, i.e. EC, TDS, pH, DO, temperature, and salinity, at every 1 km except non-accessible areas and groundwater for every 5 km were analysed and used for identification of SGD zones in the study area. The hydraulic gradient values vary from - 11 to 250 m in post-monsoon and - 14 to 250 m in pre-monsoon. And sea surface temperature anomaly for 2017, 2018 and 2019 varies between 21-39 °C, 15-34 °C and 20-39 °C. Three districts out of the four districts studied (Krishna, Guntur and Nellore) were shown to be prone to SWI, whereas Prakasam district was susceptible for SGD. For the first time, this kind of preliminary study was carried out in the coastal Andhra Pradesh region, and it will serve as a basis for the meticulous analysis of the fresh and saline water mixing zones/process as well as to develop and manage the groundwater resources along the water-stressed coastal plains of Andhra Pradesh, India.


Subject(s)
Groundwater , Water Quality , Environmental Monitoring , Temperature , Groundwater/analysis , Seawater/analysis , India
2.
Environ Sci Pollut Res Int ; 29(48): 72366-72383, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35028838

ABSTRACT

The study aims to determine the impact of global meteorological parameters on SARS-COV-2, including population density and initiation of lockdown in twelve different countries. The daily trend of these parameters and COVID-19 variables from February 15th to April 25th, 2020, were considered. Asian countries show an increasing trend between infection rate and population density. A direct relationship between the time-lapse of the first infected case and the period of suspension of movement controls the transmissivity of COVID-19 in Asian countries. The increase in temperature has led to an increase in COVID-19 spread, while the decrease in humidity is consistent with the trend in daily deaths during the peak of the pandemic in European countries. Countries with 65°F temperature and 5 mm rainfall have a negative impact on COVID-19 spread. Lower oxygen availability in the atmosphere, fine droplets of submicron size together with infectious aerosols, and low wind speed have contributed to the increase in total cases and mortality in Germany and France. The onset of the D614G mutation and subsequent changes to D614 before March, later G614 in mid-March, and S943P, A831V, D839/Y/N/E in April were observed in Asian and European countries. The results of the correlation and factor analysis show that the COVID-19 cases and the climatic factors are significantly correlated with each other. The optimum meteorological conditions for the prevalence of G614 were identified. It was observed that the complex interaction of global meteorological factors and changes in the mutational form of CoV-2 phase I influenced the daily mortality rate along with other comorbid factors. The results of this study could help the public and policymakers to create awareness of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Communicable Disease Control , Humans , Oxygen , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...