Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 262: 127808, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32755693

ABSTRACT

In terms of investigating the authentic plant biomonitoring and phytoextraction potentials, the samples of soils and shoots of the sun spurge (SS) and common nettle (CN), were collected near several polluted water bodies in the close vicinity of the copper mining/metallurgical complex in Bor (Serbia) and characterized with regard to the content of heavy metal(oid)s: As, Cd, Pb, Cu, and Zn. The methods applied in this work such as inductively coupled plasma-mass spectrometry, one-way analysis of variance, Pearson's correlation study, hierarchical cluster analysis, and the calculation of bioaccumulation rates (expressed through the so called mobility ratios, MRs), provided very informative data on the potentials of both investigated pioneer species. The most important findings were: 1) In most cases, SS was more effective in metal extraction/translocation/bioaccumulation than CN, and especially with regard to Cu; in this particular case, extremely high concentrations were recorded and also, some significant MRs were calculated, which may be a signal of its promising potential for Cu-phytoremediation, practically, Cu-phytoextraction; however, generally, the values of most calculated MRs were very low (<1, for both plants); 2) The shoots of both plants reflected soundly the current status of metal presence in the studied environment and they can be recommended for seasonal screenings of a general level of metal pollution in the areas of interest; however, specifically, they cannot reflect quite correctly the level of soil pollution; 3) Soil Cu, and As were detected in alarming concentrations.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Biological Monitoring , Copper/analysis , Metallurgy , Mining , Plants , Serbia , Soil/chemistry , Water Pollution/analysis
2.
Environ Sci Pollut Res Int ; 25(34): 34139-34154, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30284709

ABSTRACT

Plants growing in areas polluted by heavy metals represent excellent models for the investigations related to their potentials for hazardous metals accumulation which further may help in the estimation of plant practical biomonitoring and phytoremediation potentials. In this study, the potentials of the grapevine cultivar Tamjanika from a highly polluted region in Eastern Serbia, with intensive copper mining and metallurgical activities, were estimated in regard to the potentially toxic elements such as iron and manganese; the potential danger from these metals through fruit consummation is also considered. Used methods were the following: ICP-OES analysis, calculation of biological coefficients, the Pearson correlation study, one-way ANOVA, and hierarchical cluster analysis. The results revealed that a great majority of the recorded concentrations in different plant organs were in the range of normal concentrations, as well as that the calculated accumulation rates for both metals were very low. The data also pointed to generally minimal to moderate enrichment by these metals which represents totally dissimilar situation in comparison with other heavy metals detected in the very same plant samples. The results of this study suggested that the investigated plants of the grapevine cv Tamjanika assimilated iron and manganese predominately according to their individual needs, and confirmed that the utilization of this plant species can be very effective in different biomonitoring procedures and also in the phytoremediation procedure known as phytostabilization. At the same time, it was obvious that even in aggressive circumstances its fruit was protected from some serious contamination and kept pretty safe for consummation.


Subject(s)
Iron/analysis , Manganese/analysis , Soil Pollutants/analysis , Vitis/chemistry , Biodegradation, Environmental , Copper , Environmental Monitoring/methods , Food Contamination/analysis , Iron/pharmacokinetics , Iron/toxicity , Manganese/pharmacokinetics , Manganese/toxicity , Metallurgy , Mining , Serbia , Soil Pollutants/pharmacokinetics , Soil Pollutants/toxicity , Tissue Distribution , Vitis/drug effects
3.
Environ Sci Pollut Res Int ; 24(18): 15609-15621, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28523616

ABSTRACT

Samples of roots and spatial soils of native Rubus fruticosus L. were collected from the spots positioned at different distances from the copper smelter and city heating plants in the industrial zone of the town of Bor (Serbia) and subjected to chemical analyses in order to determine the content of several heavy metals, and 15 priority polycyclic aromatic hydrocarbons (PAHs). In this study, the results for 9 low and medium molecular weight PAHs (LMW and MMW PAHs) are represented and processed using the calculation of bio-concentration factors and statistical methods such as hierarchical cluster analysis and Pearson's correlation study with the aim of investigating the plant capabilities for their uptake from the soil and later accumulation into the root tissue, under the hostile circumstances of multiple contamination. The obtained data revealed different accumulation rates for the investigated PAHs and showed that in several cases, the contents of root PAHs were under the strong influence of present contaminants such as soil copper and some soil PAHs, indicating at the same time that R. fruticosus can regulate the processes of LMW and MMW PAHs extraction/accumulation using different mechanisms, depending on the existing environmental circumstances. The used mechanisms could be exploited in phytoremediation methods based not only on the extraction and concentration of PAHs in plant roots but also on PAH degradation or stabilization in the soil. Also, the results of this study confirmed that, except in the case of naphthalene and fluoranthene, there was no PAH pollution, which originated solely from the industrial zone.


Subject(s)
Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Rubus , Soil Pollutants/pharmacokinetics , Cities , Copper , Environmental Monitoring , Mining , Molecular Weight , Serbia , Soil
4.
Food Chem ; 217: 568-575, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664673

ABSTRACT

The samples of spatial soils and different organs of Prunus persica L. Batech and Malus domestica were analyzed by methods such as inductively coupled plasma optical emission spectroscopy (ICP-OES), Hierarchical Cluster Analysis (HCA), One-way ANOVA, and calculation of biological accumulation factors (BAFs) with the aim of investigating whether these methods may help in the evaluation of trace metals in plants, as well as in the estimation of plant bioaccumulation potentials. ICP-OES provided accurate data on present concentrations of Cu, Zn, Pb, As, Cd, and Ni which showed that most concentrations were in normal ranges, except in some cases for Cu, Zn, and As. HCA illustrated nicely various specifics in the distribution of metals in both investigated systems plant-soil. One-way ANOVA pointed successfully on the existing statistical differences between metal concentrations. Calculated BAFs showed that both plants had very low accumulation rates for all elements; they acted as metal excluders.


Subject(s)
Malus/chemistry , Metals/analysis , Prunus persica/chemistry , Trace Elements/analysis , Electric Conductivity , Fruit/chemistry , Hydrogen-Ion Concentration , Reproducibility of Results , Serbia , Soil/chemistry , Spectrum Analysis
5.
Sci Total Environ ; 562: 561-570, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27110970

ABSTRACT

In this work, the samples of roots and soils from the rooting zone of wild blackberry were collected from the urban-industrial and rural locations near "The Copper Mining and Smelting Complex Bor" (Serbia); they were analyzed by gas chromatographic-mass spectrometric method to determine the content of high-molecular weight polycyclic aromatic hydrocarbons (HMW PAHs). The obtained results were further processed using bio-concentration factor, Pearson's correlation study and hierarchical cluster analysis with the aim of investigating if they may be in favor of wild blackberry as a suitable plant for biomonitoring or phytoremediation purposes. In spite of the fact that numerous complex factors can affect the assimilation and accumulation of PAHs in plants, the obtained data expressed clearly many interesting specifics related to HMW PAH accumulation in roots of wild blackberry that naturally grows in an area, which is heavily polluted by heavy metals. The accumulation of individual PAH compounds in plant roots was at different level. The most abundant compound in all plant samples was benzo[a]pyrene and based on the results obtained for this environmental indicator of carcinogenic PAHs, it was possible to make several central conclusions: wild blackberry showed an excellent potential for its extraction from the soil and further accumulation in root tissues which indicate that this plant species may be applied in phytoremediation procedures based on mechanisms such as phytoextraction/phytoaccumulation in roots; phytostabilization and rhizodegradation are also possible as remediation mechanisms; utilization of plant roots in soil monitoring is possible but in this case, only the combination with soil data can provide correct information.


Subject(s)
Plant Roots/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Rubus/chemistry , Soil Pollutants/analysis , Biodegradation, Environmental , Environmental Monitoring , Plant Roots/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Rubus/metabolism , Serbia , Soil Pollutants/metabolism
6.
Environ Sci Pollut Res Int ; 22(9): 7155-75, 2015 May.
Article in English | MEDLINE | ID: mdl-25510611

ABSTRACT

In this study, the samples of the spatial soil and organs of the grapevine (Vitis vinifera) cultivar Tamjanika were collected from the selected zones near the Mining and Smelting Complex Bor (East Serbia). They were analyzed by ICP-OES to determine the content of Cu, Zn, Pb, As, Cd, and Ni with the aim of ascertaining if these data may help in the assessment and improvement of the quality of environment in polluted areas such as Bor and its surrounding area. The results obtained from the calculated biological and enrichment factors, as well as from the Pearson correlation study and hierarchical cluster analysis confirmed that very useful information is recorded in plant organs: root, stem, leaves, and fruit. Yet, when the atmospheric pollution is the sphere of interest, the most informative data are found in unwashed leaves. The results of this study indicated also that the investigated plant species has some highly effective strategies involved in tolerance to the stress induced by heavy metals, which makes it an excellent candidate for phytostabilization purposes. Planting of this grapevine cultivar can be recommended in all areas that are severely polluted with heavy metals.


Subject(s)
Metals, Heavy/metabolism , Soil Pollutants/chemistry , Vitis/chemistry , Environmental Monitoring/methods , Environmental Pollution/analysis , Hazardous Substances/analysis , Metals, Heavy/chemistry , Mining , Serbia , Soil/chemistry , Soil Pollutants/metabolism , Vitis/metabolism
7.
Arch Environ Contam Toxicol ; 65(4): 671-82, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23963120

ABSTRACT

Copper production in the Bor region (east Serbia) during the last 100 years has influenced the quality of soil, water, and air. This pollution has endangered not only the biotope but all living organisms, including humans. Contents of arsenic (As) and cadmium (Cd) were analyzed in Betula sp. (birch) and Tillia sp. (lime) within the Bor region with the aim to investigate the bioaccumulation of these highly toxic, nonessential trace elements in selected plants, which may be important for biomonitoring and bioremediation purposes. The results of statistical data analysis showed that several factors influenced the bioaccumulation of trace elements in the examined plants, of which soil pH, soil content, and mechanism of accumulation were the main factors. The greatest As and Cd concentrations were found in plant material from the Bor center sampling site in the urban/industrial zone, which is in close proximity to the pollution source, due to the greatest metal concentrations in soil and the lowest soil pH. The low values of biological accumulation coefficients (bioconcentration factor <1, mobility ratio <1) pointed to a low rate of uptake and accumulation of As and Cd in lime and birch. Trace elements showed different patterns of behavior and accumulation in the trees. Lime showed a high ability of assimilation through leaves, whereas birch showed a better potential to express a linear correlation between concentrations in plant parts and soil.


Subject(s)
Arsenic/analysis , Betula/chemistry , Cadmium/analysis , Environmental Monitoring , Malvaceae/chemistry , Soil Pollutants/analysis , Serbia
SELECTION OF CITATIONS
SEARCH DETAIL
...