Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2269): 20230173, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342206

ABSTRACT

Geodiversity is an essential part of nature's diversity. However, geodiversity is insufficiently understood in terms of its spatial distribution and its relationship to biodiversity over large spatial extents. Here, we present European geodiversity data at resolutions of 1 km and 10 km. We assess terrestrial geodiversity quantitatively as a richness variable (georichness) using a commonly employed grid-based approach. The data incorporate aspects of geological, pedological, geomorphological and hydrological diversity, which are also available as separate richness variables. To evaluate the data, we correlated European georichness with empirically tested national georichness data from Finland, revealing a positive correlation at both 1 km (rp = 0.37, p < 0.001) and 10 km (rp = 0.59, p < 0.001) resolutions. We also demonstrate potential uses of the European data by correlating georichness with vascular plant species richness in two contrasting example areas: Finland and Switzerland. The positive correlations between georichness and species richness in Finland (rp = 0.34, p < 0.001) and Switzerland (rp = 0.26, p < 0.001) further support the use of our data in geodiversity-biodiversity research. Moreover, there is great potential beyond geodiversity-biodiversity questions, as the data can be exploited across different regions, ecosystems and scales. These geodiversity data provide an insight on abiotic diversity in Europe and establish a quantitative large-scale geodiversity assessment method applicable worldwide. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Europe
2.
Science ; 366(6467): 878-881, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31727836

ABSTRACT

Unlike in land plants, photosynthesis in many aquatic plants relies on bicarbonate in addition to carbon dioxide (CO2) to compensate for the low diffusivity and potential depletion of CO2 in water. Concentrations of bicarbonate and CO2 vary greatly with catchment geology. In this study, we investigate whether there is a link between these concentrations and the frequency of freshwater plants possessing the bicarbonate use trait. We show, globally, that the frequency of plant species with this trait increases with bicarbonate concentration. Regionally, however, the frequency of bicarbonate use is reduced at sites where the CO2 concentration is substantially above the air equilibrium, consistent with this trait being an adaptation to carbon limitation. Future anthropogenic changes of bicarbonate and CO2 concentrations may alter the species compositions of freshwater plant communities.


Subject(s)
Adaptation, Physiological , Aquatic Organisms/metabolism , Bicarbonates/metabolism , Lakes , Magnoliopsida/metabolism , Photosynthesis , Rivers , Carbon Dioxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...