Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22268901

ABSTRACT

BackgroundSeveral autoimmune features occur during coronavirus disease 2019 (COVID-19), with possible implications for disease course, immunity, and autoimmune pathology. In this study, we longitudinally screened for clinically relevant systemic autoantibodies to assess their prevalence, temporal trajectory, and association with immunity, comorbidities, and severity of COVID-19. MethodsWe performed highly sensitive indirect immunofluorescence assays to detect anti-nuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA), along with serum proteomics and virome-wide serological profiling in a multicentric cohort of 175 COVID-19 patients followed-up to one year after infection, eleven vaccinated individuals, and 41 unexposed controls. ResultsCompared to healthy controls, similar prevalence and patterns of ANA were present in patients during acute COVID-19 and recovery. However, paired analysis revealed a subgroup of patients with transient presence of certain ANA patterns during acute COVID-19. Furthermore, patients with severe COVID-19 exhibited a high prevalence of ANCA during acute disease. These autoantibodies were quantitatively associated with higher SARS-CoV-2-specific antibody titers in COVID-19 patients and in vaccinated individuals, thus linking autoantibody production to increased antigen-specific humoral responses. Notably, the qualitative breadth of antibodies cross-reactive with other coronaviruses was comparable in ANA-positive and ANA- negative individuals during acute COVID-19. In autoantibody-positive patients, multiparametric characterization demonstrated an inflammatory signature during acute COVID-19 and alterations of the B cell compartment after recovery. ConclusionHighly sensitive indirect immunofluorescence assays revealed transient autoantibody production during acute SARS-CoV-2 infection, while the presence of autoantibodies in COVID-19 patients correlated with increased anti-viral humoral immune responses and inflammatory immune signatures.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20241778

ABSTRACT

BackgroundRT-PCR of nasopharyngeal swabs (NPS) is the acknowledged gold standard for the detection of SARS-CoV-2 infection. Rising demands for repetitive screens and mass-testing necessitate, however, the development of additional test strategies. Saliva may serve as an alternative to NPS as its collection is simple, non-invasive and amenable for mass- and home-testing but rigorous validation of saliva particularly in children is missing. MethodsWe conducted a large-scale head-to-head comparison of SARS-CoV-2 detection by RT-PCR in saliva and nasopharyngeal swab (NPS) of 1270 adults and children reporting to outpatient test centers and an emergency unit for an initial SARS-CoV-2 screen. The saliva collection strategy developed utilizes common, low-cost plastic tubes, does not create biohazard waste at collection and was tailored for self-collection and suitability for children. ResultsIn total, 273 individuals were tested SARS-CoV-2 positive in either NPS or saliva. SARS-CoV-2 RT-PCR results in the two specimens showed a high agreement (Overall Percent Agreement = 97.8%). Despite lower viral loads in saliva of both adults and children, detection of SARS-CoV-2 in saliva compared well to NPS (Positive Percent Agreement = 92.5%). Importantly, in children, SARS-CoV-2 infections were more often detected in saliva than NPS (Positive Predictive Value = 84.8%), underlining that NPS sampling in children can be challenging. ConclusionsThe comprehensive parallel analysis reported here establishes saliva as a generally reliable specimen for the detection of SARS-CoV-2 with particular advantages for testing children that is readily applicable to increase and facilitate repetitive and mass-testing in adults and children. Article Summary Main PointsComparison with nasopharyngeal swabs in a large test center-based study confirms that saliva is a reliable and convenient material for the detection of SARS-CoV-2 by RT-PCR in adults and increases detection efficacy in children.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-236521

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a broad clinical presentation ranging from asymptomatic infection to fatal disease. Different features associated with the immune response to SARS-CoV-2, such as hyperinflammation and reduction of peripheral CD8+ T cell counts are strongly associated with severe disease. Here, we confirm the reduction in peripheral CD8+ T cells both in relative and absolute terms and identify T cell apoptosis and migration into inflamed tissues as possible mechanisms driving peripheral T cell lymphopenia. Furthermore, we find evidence of elevated serum interleukin-7, thus indicating systemic T cell paucity and signs of increased T cell proliferation in patients with severe lymphopenia. Following T cell lymphopenia in our pseudo-longitudinal time course, we observed expansion and recovery of poly-specific antiviral T cells, thus arguing for lymphopenia-induced T cell proliferation. In summary, this study suggests that extensive T cell loss and subsequent T cell proliferation are characteristic of severe COVID-19.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-236315

ABSTRACT

Coronavirus disease 2019 (COVID-19) manifests with a range of severities, but immune signatures of mild and severe disease are still not fully understood. Excessive inflammation has been postulated to be a major factor in the pathogenesis of severe COVID-19 and innate immune mechanisms are likely to be central in the inflammatory response. We used 40-plex mass cytometry and targeted serum proteomics to profile innate immune cell populations from peripheral blood of patients with mild or severe COVID-19 and healthy controls. Sampling at different stages of COVID-19 allowed us to reconstruct a pseudo-temporal trajectory of the innate immune response. Despite the expected patient heterogeneity, we identified consistent changes during the course of the infection. A rapid and early surge of CD169+ monocytes associated with an IFN{gamma}+MCP-2+ signature quickly followed symptom onset; at symptom onset, patients with mild and severe COVID-19 had a similar signature, but over the course of the disease, the differences between patients with mild and severe disease increased. Later in the disease course, we observed a more pronounced re-appearance of intermediate/non-classical monocytes and mounting systemic CCL3 and CCL4 levels in patients with severe disease. Our data provide new insights into the dynamic nature of the early inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and identifies sustained pathological innate immune responses as a likely key mechanism in severe COVID-19, further supporting investigation of targeted anti-inflammatory interventions in severe COVID-19.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-108308

ABSTRACT

BackgroundInfection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an acute illness termed coronavirus disease 2019 (COVID-19). Humoral immune responses likely play an important role in containing SARS-CoV-2, however, the determinants of SARS-CoV-2-specific antibody responses are unclear. MethodsUsing immunoassays specific for the SARS-CoV-2 spike protein, we determined SARS-CoV-2-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) in sera and mucosal fluids of two cohorts, including patients with quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR)-confirmed SARS-CoV-2 infection (n = 56; median age 61 years) with mild versus severe COVID-19, and SARS-CoV-2-exposed healthcare workers (n = 109; median age 36 years) with or without symptoms and tested negative or positive by RT-qPCR. FindingsOn average, SARS-CoV-2-specific serum IgA titers in mild COVID-19 cases became positive eight days after symptom onset and were often transient, whereas serum IgG levels remained negative or reached positive values 9-10 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers as a function of duration since symptom onset, independent of patient age and comorbidities. Very high levels of SARS-CoV-2-specific serum IgA correlated with severe acute respiratory distress syndrome (ARDS). Interestingly, some of the SARS-CoV-2-exposed healthcare workers with negative SARS-CoV-2-specific IgA and IgG serum titers had detectable SARS-CoV-2-specific IgA antibodies in their nasal fluids and tears. Moreover, SARS-CoV-2-specific IgA levels in nasal fluids of these healthcare workers were inversely correlated with patient age. InterpretationThese data show that systemic IgA and IgG production against SARS-CoV-2 develops mainly in severe COVID-19, with very high IgA levels seen in patients with severe ARDS, whereas mild disease may be associated with transient serum titers of SARS-CoV-2-specific antibodies but stimulate mucosal SARS-CoV-2-specific IgA secretion. The findings suggest four grades of antibody responses dependent on COVID-19 severity.

SELECTION OF CITATIONS
SEARCH DETAIL
...