Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e31146, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813226

ABSTRACT

Physico-chemical properties of fish flesh are reliable predictors of fillet quality and nutritional value. In our study, the age-related variations of the chemical composition, pH, water activity (aw), water holding capacity (WHC), color and texture analysis, protein thermal stability, myofibrillar fragmentation index (MFI), glycogen content, protein oxidation and protein profiles were investigated in Oncorhynchus mykiss (rainbow trout) fillet. The results revealed that protein denaturation temperatures (Tmax1 and Tmax2) decreased by 2 % and 11.6 % depending on fish age. Tmax1 and Tmax2 values in the same groups were raised 71 % at 11 months' fish and this increase was 58 % at 23 months' fish. An age-related reduction by 66.6 % and 31.25 % was noticed for protein oxidation markers sulfhydryl groups and disulfide bonds. MFI value increased by 86.6 % connected with age. The characteristics of fish meat quality are complex and are influenced by various factors that affect the degree of freshness of the product and its acceptance in the market. Taking into account the different demands of the consumer, this study has shown that age at slaughter has an impact on final product quality and that the recommended age at slaughter, taking into account market weight, positively affects meat quality.

2.
Sci Rep ; 14(1): 7944, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575598

ABSTRACT

In recent years, the presence and migration of PAEs in packaging materials and consumer products has become a serious concern. Based on this concern, the aim of our study is to determine the possible migration potential and speed of PAEs in benthic fish stored in vacuum packaging, as well as to monitor the storage time and type as well as polyethylene (PE) polymer detection.As a result of the analysis performed by µ-Raman spectroscopy, 1 microplastic (MP) of 6 µm in size was determined on the 30th day of storage in whiting fish muscle and the polymer type was found to be Polyethylene (PE) (low density polyethylene: LDPE). Depending on the storage time of the packaging used in the vacuum packaging process, it has been determined that its chemical composition is affected by temperature and different types of polymers are formed. 10 types of PAEs were identified in the packaging material and stored flesh fish: DIBP, DBP, DPENP, DHEXP, BBP, DEHP, DCHP, DNOP, DINP and DDP. While the most dominant PAEs in the packaging material were determined as DEHP, the most dominant PAEs in fish meat were recorded as BBP and the lowest as DMP. The findings provide a motivating model for monitoring the presence and migration of PAEs in foods, while filling an important gap in maintaining a safe food chain.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Animals , Diethylhexyl Phthalate/analysis , Plastics , Vacuum , Phthalic Acids/chemistry , Polyethylene/analysis , Polymers , Dibutyl Phthalate , Esters/analysis , China
3.
Drug Chem Toxicol ; : 1-14, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326995

ABSTRACT

This study investigated the curative effect of black cumin oil (Nigella sativa, NS), which is a phytotherapeutic agent against to cypermethrin (CYP), which is known to have adverse effects on rainbow trout (Oncorhynchus mykiss)'s behavioral changes, oxidative stress-mediated neurotoxicity, hematotoxicity and hepatotoxicity parameters.At the end of the trial period; (i) evaluation of critical swimming speed (Ucrit) (ii) hematology indices [white blood cell (WBC), red blood cell (RBC), hemoglobin (Hgb), hematocrit (Hct), mean cell volume (MCV), mean cell hemoglobin) (MCH), mean cell hemoglobin concentration (MCHC)] (iii) Elucidation of the mechanism of functional damage in brain tissue of O. mykiss by neurological parameter [acetylcholinesterase (AChE)] (iv) Evaluation of oxidative damage in oxidative stress-mediated neurotoxicity and hepatotoxicity in liver, gill and brain tissue of O. mykiss with antioxidant enzymes [(Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Glutathione (GSH)] and [(detection by means of malondialdehyde (MDA)] (v) Obtaining applicable data in the toxicological field using a multi-biomarker approach to investigate the modulation of NS administration via target markers in the physiological pathway of O. mykiss were aimed.As a result of CYP application, it was determined that the Ucrit value of O. mykiss decreased significantly. It was determined that the changes in the values of RBC, Hgb and Hct, which are among the hematology parameters examined in the blood tissue, were statistically significant (p < 0.05). It was determined that WBC value was inhibited by CYP application and NS tried to make a positive contribution to WBC. It was determined that the AChE activity of O. mykiss in the brain tissue had a statistically significant inhibition in the CYP-treated group (p < 0.05). SOD, CAT, GPx, enzyme activities were found to be inhibited by CYP application and were statistically significant (p < 0.05). Acute toxicity of CYP was determined by antioxidant enzyme biomarkers in gill tissue. In the results obtained; While inhibitions were determined in SOD, CAT, GPx activities compared to the control group, an induction occurred in MDA value.NS administration was noted to be an important modulator of the SOD-CAT system against CYP exposure at both concentrations. Thus, it can be said that it indirectly functions as an effective antioxidant through the NS receptor protein and structurally stimulates the synthesis and activity of antioxidative enzymes under oxidative stress.

4.
Toxicol Mech Methods ; : 1-11, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38379298

ABSTRACT

This study focuses on the comparative metabolic profiling and effects of two steroid types: natural and synthetic, specifically 17α-methyl testosterone (17α-MT) at varying concentrations (1.5, 2, and 3 mg/kg) in rainbow trout (Oncorhynchus mykiss). Over a 75-day feeding trial, growth metrics, such as feed efficiency, daily specific growth, live weight gain, total weight gain, and survival rate were systematically monitored every 15 days. At the end of the feeding trial, histopathology, immunohistochemistry, and metabolome analyses were performed in the high-concentration groups (3 mg/kg natural and 3 mg/kg synthetic), in which the lowest survival rate was determined. Key findings reveal that the type of hormone significantly influences growth parameters. While some natural steroids enhanced certain growth aspects, synthetic variants often yielded better results. The metabolomic analysis highlighted significant shifts in the metabolism of tryptophan, purine, folate, primary bile acids, phosphonates, phosphinates, and xenobiotics via cytochrome P450 pathways. Histopathologically, the natural hormone groups showed similar testicular, hepatic, muscular, gill, cerebral, renal, and intestinal tissue structures to the control, with minor DNA damage and apoptosis observed through immunohistochemistry. Conversely, the synthetic hormone groups exhibited moderate DNA damage and mild degenerative and necrotic changes in histopathology.

5.
J Sci Food Agric ; 104(3): 1511-1520, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37804144

ABSTRACT

BACKGROUND: Temperature, which affects numerous physiological processes, has been described as the 'main ecological factor' for fish. The aim of this modeling study is to explore the impact of climate-induced temperature changes on fish fillet quality and shelf life. RESULTS: Temperature stress in rainbow trout affected ash and moisture, and inhibited myofibril fragmentation in the fillets. However, with the increase in temperature, there was a decrease in the total amount of saturated fatty acids (∑SFA) and there were significant increases in the total amount of omega 3 (∑n3) and 22:6n-3 (DHA). It was determined that temperature increase had a negative effect on color, texture, water-holding capacity, water activity, pH, lactic acid, and glycogen levels in fillets, and it had a positive effect by delaying microbial spoilage, especially in cold storage. CONCLUSION: This study suggest that the effects of climate change on product quality and shelf life in fish requires further research. It highlights knowledge gaps to guide future research in this emerging field. © 2023 Society of Chemical Industry.


Subject(s)
Fatty Acids, Omega-3 , Oncorhynchus mykiss , Animals , Climate Change , Water
6.
Mar Environ Res ; 193: 106294, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096712

ABSTRACT

Contamination of the aquatic environment with different insecticides is a major concern in the aquatic ecosystem today. For this reason, in the designed study, Thiamethoxam (TMX) for which there is limited information on its negative effects on Oncorhynchus mykiss was investigated, its effects on hematotoxicity, oxidative status, cytotoxicity, DNA damage and apoptotic status indicators in blood/liver tissue. However, the antitoxic potential of ulexite (UX) supplementation in the elimination of TMX-mediated toxicity has been determined. LC50-96h value determined for TMX 0.73 mg/L has been determined. As a result of hematology profile, TMX application, RBC, Hgb and Hct values showed a temporal decrease compared to the control group, while increases were determined in MCV, MCH and MCHC values. It was determined that the inhibition/induction of hematological parameters was slowed down by adding UX to the medium. During the trial (48th and 96th hours), it was noted that TMX induced cortisol level, while UX supplementation slowed this induction at 48th hour. Antioxidant enzyme activities were significantly inhibited by TMX application, and MDA and MPO values increased as a result of the stimulation of ROS. It was determined that UX added to the medium showed activity in favor of antioxidants and tried to inhibit MDA and MPO levels. When Nrf-2, one of the inflammation parameters, was compared with the administration and control groups, it was determined that it inhibited depending on time, TNF-α, IL-6, DNA damage and apoptosis were induced, and UX suppressed this situation. The results obtained were evaluated as statistically meaningful. Briefly, it was determined that TMX induced oxidative damage in all tissues at 48th - 96th hours, whereas UX mitigated this situation. The results provide possible in vivo evidence that UX supplements can reduce TMX-mediated oxidative stress and tissues damage in O. mykiss blood and liver tissues.


Subject(s)
Chemical and Drug Induced Liver Injury , Insecticides , Humans , Thiamethoxam/toxicity , Ecosystem , Oxidative Stress , Antioxidants , Insecticides/toxicity
7.
PLoS One ; 18(11): e0294656, 2023.
Article in English | MEDLINE | ID: mdl-38032944

ABSTRACT

Described as the 'main ecological factor', temperature, strongly affects the physiological stress responses of fish. In order to evaluate the effects of temperature variations on fish culture and food value chain, the present study was designed as a climate change model. Furthermore, the present study provides a theoretical basis for a better understanding of the mechanisms of the environmentally induced changes. In this direction, we examined the blood physiology and oxidative stress responses induced by temperature variation in the rainbow trout, a temperature-sensitive cold-water fish. The obtained results showed that climate changes promoted the inhibited activities' expressions and the development of potential tissue and hematological defense mechanisms against temperature-induced toxic damage. This study showed that climate change could be a subset of the studies on the stress physiology in aquaculture, which can be developed for new experimental designs and research collaborations. Furthermore, it highlights knowledge gaps to guide future research in this emerging field.


Subject(s)
Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/physiology , Climate Change , Oxidative Stress , Stress, Physiological , Temperature
8.
J Trace Elem Med Biol ; 80: 127268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37541166

ABSTRACT

Although nickel (Ni) is an important cofactor for various enzymes in biological systems, it can cause serious problems when insufficient or excessive in an organism. Therefore, it is very important to investigate Ni in biological systems, especially in cells with its related pathogenic mechanism. This study was carried out to demonstrate the effects of zingerone (ZO) and rutin (RN) administration against nickel chloride (NiCl2) toxicity on neurobehavioral performance and brain oxidative status in zebrafish (Danio rerio) embryos/larvae on histological perspective. The experimental design of the study, which included twenty groups of fish, each containing 10 embryos, was prepared as semi-static and the trial continued for 96 hpf. In the obtained findings, it was determined that ZO and RN had a mitigating effect in this toxicity table where Ni caused oxidative stress in zebrafish larvae, induced DNA damage and apoptosis. A similar picture is valid for malformation processes as well as survival and hatching rates. These results showed that nickel is toxic to developing embryos via acting different mechanisms. In conclusion, we observed that ZO and RN have a greater effect on physiology, DNA damage and apoptosis than gross morphology, with a significant ameliorative effect.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/physiology , Nickel/metabolism , Oxidative Stress , Apoptosis , DNA Damage , Embryo, Nonmammalian/metabolism , Larva , Water Pollutants, Chemical/metabolism
9.
Nanotechnology ; 34(38)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410436

ABSTRACT

Fish and other seafood are fundamental nutritional ingredients for a healthy life that are consumed globally. However, the high degree of spoilage of these products has led to the progress of a prevalent variety of preservation, processing, and analytical techniques in this sector. Food safety, authenticity, nutritional quality, and freshness are important features of aquaculture quality. In seafood processing, developing nanotechnology (nanotech), by adapting to new and complex applications, has promising applications for all segments of the food supply chain, including quality assessment, packaging, and storage. In this review, the application of nanotech in food, and especially in seafood, and its positive contributions to processing, preservation, the packaging industry, and the toxicity potential of nanoparticles (NPs) in food and food safety are investigated, and an overview is given. In line with this perspective, by examining the current state of nanotech in seafood processing procedures, not only present practices and future expectations but also studies on this subject are reviewed, and future pathways/future lines of research are predicted is attempted to be formed. In light of this research, it is understood that, depending on their properties, NPs are effective in their fields of use, and their success is related to the application procedures for which they are used. It is seen that these substances, which are synthesized in different ways, especially in recent years, are preferred in applications for improving product quality, product development, storage, and packaging stages of green synthesis particles.


Subject(s)
Fishes , Seafood , Animals , Seafood/analysis , Aquaculture , Nanotechnology
10.
Sci Total Environ ; 892: 164682, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37301397

ABSTRACT

Increasing nanoplastics (NPs) pollution may lead to unknown environmental risks when considered together with climate change, which has the potential to become an increasingly important environmental issue in the coming decades. In this context, the present study aimed to evaluate the stressor modelling of polystyrene nanoplastic (PS-NPs) combined with temperature increase in zebrafish. For this purpose, changes in gill, liver and muscle tissues of zebrafish exposed to PS-NPs (25 ppm) and/or different temperatures (28, 29 and 30 °C) for 96 h under static conditions were evaluated. The results obtained emphasize that exposure to PS-NPs stressors under controlled conditions with temperature increase induces DNA damage through stress-induced responses accompanied by degeneration, necrosis and hyperaemia in zebrafish liver and adhesion of lamellae, desquamation and inflammation in lamellar epithelium in gills. Metabolomic analyses also supported changes indicating protein and lipid oxidation, especially PS-NPs-mediated. These findings will contribute to the literature as key data on the effects of PS-NPs presence on protein/lipid oxidation and fillet quality in muscle tissues.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Polystyrenes/toxicity , Polystyrenes/metabolism , Microplastics/toxicity , Microplastics/metabolism , Zebrafish/physiology , Gills/metabolism , Temperature , Global Warming , Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Liver/metabolism , Lipids
11.
Chem Biol Interact ; 378: 110484, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37054932

ABSTRACT

Industrial products containing PdCu@GO can gain access to the aquaculture environment, causing dangerous effects on living biota. In this study, the developmental toxicity of zebrafish treated with different concentrations (50, 100, 250, 500 and 1000 µg/L) of PdCu@GO was investigated. The findings showed that PdCu@GO administration decreased the hatchability and survival rate, caused dose-dependent cardiac malformation. Reactive oxygen species (ROS) and apoptosis were also inhibited in a dose-dependent manner, with acetylcholinesterase (AChE) activity affected by nano-Pd exposure. As evidence for oxidative stress, malondialdehyde (MDA) level increased and superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) activities and glutathione (GSH) level decreased due to the increase in PdCu@GO concentration. Our research, it was determined that the oxidative stress stimulated by the increase in the concentration of PdCu@GO in zebrafish caused apoptosis (Caspase-3) and DNA damage (8-OHdG). Stimulation of ROS, inflammatory cytokines, tumor Necrosis Factor Alfa (TNF-α) and interleukin - 6 (IL-6), which act as signaling molecules to trigger proinflammatory cytokine production, induced zebrafish immunotoxicity. However, it was determined that the increase of ROS induced teratogenicity through the induction of nuclear factor erythroid 2 level (Nrf-2), NF-κB and apoptotic signaling pathways triggered by oxidative stress. Taken together with the research findings, the study contributed to a comprehensive assessment of the toxicological profile of PdCu@GO by investigating the effects on zebrafish embryonic development and potential molecular mechanisms.


Subject(s)
Antioxidants , Zebrafish , Animals , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Zebrafish/metabolism , Oxidants/metabolism , Larva , Acetylcholinesterase/metabolism , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Embryo, Nonmammalian
12.
J Sci Food Agric ; 103(9): 4340-4350, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36782090

ABSTRACT

BACKGROUND: In this study, the effects of biofilm coatings obtained by immobilization of different borates - namely borax (BX), colemanite (COL), and ulexite (UX) - with chitosan (Ch) on the shelf life of rainbow trout fillets were investigated. The immobilization and characterization of borates in Ch were confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential analysis. In determining the shelf life of fillets that were covered by immersion and stored for 15 days, microbiological (total aerobic mesophilic, psychrotrophic, lactic acid, Pseudomonas, and Enterobacteriaceae bacteria counts) and chemical analyses (total volatile basic nitrogen, thiobarbituric acid reactive substance, and pH levels) were performed at 3 day periodic intervals. In addition, the biodegradation of borates was determined using inductively coupled plasma mass spectrometry in biofilm-coated fillets on the 1st, 8th, and 15th storage days. RESULTS: The microbial results of the coatings enriched with borates (BX, COL, and UX) at different levels (0, 0.03, and 0.06 mg L-1 ) (due to the immobilization with Ch) show the shelf life was extended by 3-6 days in all of the treatment groups compared with the control. CONCLUSION: It was concluded that BX, COL, and UX coatings enriched by immobilization with Ch increase shelf life and improve fillet quality. In addition, the enrichment of BX, COL, and UX with Ch showed explicit natural protective effects. This study demonstrates that Ch-enriched coatings of BX, COL, and UX can be used as natural bioactive nanocarriers to provide bioactive food ingredients in the seafood processing industry. © 2023 Society of Chemical Industry.


Subject(s)
Chitosan , Food Preservation , Animals , Food Preservation/methods , Chitosan/chemistry , Borates , Gas Chromatography-Mass Spectrometry , Food Storage/methods
13.
Drug Chem Toxicol ; : 1-13, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36606327

ABSTRACT

Nowadays, the unique features of nanoparticles (NPs) have encouraged new applications in different areas including biology, medicine, agriculture, and electronics. Their quick joining into daily life not only enhances the uses of NPs in a wide range of modern technologies but also their release into the aquatic environment causes inevitable environmental concerns. On the other hand boron exhibits key physiological effects on biological systems. This research was designed for evaluating the toxicity of magnetite nanoparticles (Fe3O4-MNPs) on aquatic organisms and obtaining data for the information gap in this area. In this study, Rainbow trout (Oncorhynchus mykiss) was considered as an aquatic indicator, and trials were designed as Ulexite (a boron mineral, UX) treatment against exposure to Fe3O4-MNPs. Synthesized and characterized Fe3O4-MNPs were exposed to rainbow trouts in wide spectrum concentrations (0.005-0.08 mL/L) to analyze its lethal dose (LC50) and cytoprotective properties by UX treatment were assessed against Fe3O4-MNPs applications for 96 h. For the initial toxicity analysis, hematological parameters (blood cell counts) were examined in experimental groups and micronucleus (MN) assay was performed to monitor nuclear abnormalities after exposure to NPs. Biochemical analyzes in both blood and liver samples were utilized to assess antioxidant/oxidative stress and inflammatory parameters. Also, 8-hydroxy-2'-deoxyguanosine (8-OHdG) assay was used to investigate oxidative DNA lesions and Caspase-3 analysis was performed on both blood and liver tissues to monitor apoptotic cell death occurrence. When antioxidant enzymes in blood and liver tissue were examined, time-dependent decreases in activity were determined in SOD, CAT, GPx, and GSH enzymes, while increased levels of MDA and MPO parameters were observed in respect to Fe3O4-MNPs exposure. It was found that TNF-α, Il-6 levels were enhanced against Fe3O4-MNPs treatment, but Nrf-2 levels were decreased at the 46th and 96th h. In the 96th application results, all parameters were statistically significant (p < 0.05) in blood and liver tissue, except for the IL-6 results. It was determined that the frequency of MN, the level of 8-OHdG and caspase-3 activity increased in respect to Fe3O4-MNPs exposure over time. Treatment with UX alleviated Fe3O4-MNPs-induced hematotoxic and hepatotoxic alterations as well as oxidative and genetic damages. Our findings offer strong evidence for the use of UX as promising, safe and natural protective agents against environmental toxicity of magnetite nanoparticles.

14.
Drug Chem Toxicol ; : 1-10, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36656072

ABSTRACT

Microplastic (MP) pollution has become a health concern subject in recent years. Althoughann increasing number of studies about the ingestion of microplastics by fish, research on the oxidative stress response to MPs in natural environments is quite limited. In this study, the identification and characterization of MPs in gill (G), muscle tissues (M), and gastrointestinal tract (GI) of turbot (Scophthalmus maximus) were evaluated. Oxidative damage of MPs on the brain (B), liver (L), gill (G), and muscle (M) tissues as well as their effect on superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), paraoxonase (PON), arylesterase (AR) myeloperoxidase (MPO), and malondialdehyde (MDA) biomarkers were evaluated. The potential transmission of MPs from muscle tissues to humans was examined. Results showed that gills contain the highest amounts of MPs, ethylene propylene is the most dominant polymer type, black and blue are the most common MP color, fiber is the most common shape, and 50-200 µm is the most common MP size. Results showed that MPs cause oxidative stress of tissues with inhibiting effect on enzyme activities and promoting impact on lipid peroxidation. The oxidative damage mostly affected the liver (detoxification organ) followed by gill tissue. The intake of MPS in the European Union was estimated by EFSA as 119 items/year, while in Turkey it is 47.88 items/year. This study shows that more research is needed in terms of ecosystem health and food chain safety. The risk assessment of MPs in living organisms and environmental matrices including food safety and human health should be considered a public health issue.

15.
Brain Res ; 1803: 148241, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36639094

ABSTRACT

The current study was designed to assess the possible neuroprotective effect of borax (BX) against the toxicity of aluminum hydroxide [AH, Al (OH)3] on brain of rainbow trout (Oncorhynchus mykiss) with multibiomarker approaches. For this purpose, the presence of the neuroprotective action by BX against the AH exposure was assessed by the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), myeloperoxidase (MPO), acetylcholinesterase (AChE). In addition, we evaluated glutathione (GSH), malondialdehyde (MDA), DNA damage (8-OHdG), apoptosis (caspase 3), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), nuclear factor erythroid-2 (Nrf-2), and brain-derived neurotrophic factor (BDNF) levels in 96 h semi-static treatment. In the 48th and 96th hour samplings, apoptosis induced by AH in the Nrf-2/BDNF/AChE pathways in rainbow trout brain tissue was revealed by DNA damage, enzyme inhibitions and lipid peroxidations. On the contrary applications of BX supported antioxidant capacity without leading apoptosis, lipid peroxidation, inflammatory response and DNA damage. BX also increased the BDNF levels and AChE activity. Moreover, BX exerted a neuroprotective effect against AH-induced neurotoxicity via down-regulating cytokine-related pathways, minimising DNA damage, apoptosis as well as up-regulating GSH, AChE, BDNF and antioxidant enzyme levels. It can be concluded that the combination of borax with AH modulated the toxic effects of AH.


Subject(s)
Antioxidants , Neuroprotective Agents , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Acetylcholinesterase/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Aluminum Hydroxide/metabolism , Aluminum Hydroxide/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Superoxide Dismutase/metabolism , Brain/metabolism , Oxidative Stress , Glutathione/metabolism
16.
Crit Rev Food Sci Nutr ; 63(21): 4979-5008, 2023.
Article in English | MEDLINE | ID: mdl-34875930

ABSTRACT

Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.


Subject(s)
Seaweed , Antioxidants/pharmacology , Carbohydrates , Proteins , Pharmaceutical Preparations
17.
Food Sci Technol Int ; : 10820132221145973, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36523191

ABSTRACT

Having no adverse effects on the consumer's health, causing zero or minimal damage to the environment, and maintaining the nutritional quality of the product are too important criteria for food packaging materials. Edible biofilm packaging techniques are successful to meet many of these features. To strengthen this claim, rainbow trout (Oncorhynchus mykiss) fillets were coated with an edible film solution (obtained from quinoa starch), which attracted a lot of attention in terms of nutritional value. The prepared biofilm solutions were applied in four different groups (control, quinoa, quinoa + black seed oil, and quinoa + mint oil) and stored in refrigerator conditions (4 ± 1 °C) for 15 days. Microbiological (total aerobic mesophilic bacteria, psychrophilic bacteria, Pseudomonas, lactic acid bacteria, and Enterobacteriaceae) and chemical analyses (TBARS, TVB-N, pH) were performed on certain days of storage. At the end of the study, it was stated that coating fish fillets with edible quinoa, which was enriched by black cumin and mint essential oils, had positive chemical and microbiological results. The highest value for pH was 7.03 ± 0.09 obtained in the control group. It was found that black seed oil has antimicrobial specifications via slowing the microorganism development and prolongs the storage time. The TVB-N value was below the consumable limit value (25 mg/100g) in the treatment groups and the TBARS value was lowest (1.62 ± 0.21 µmolMA/kg) in the black seed oil group. Consequently, it is suggested that black seed oil may be used on trout fillets to prolong storage time.

18.
J Food Sci ; 87(12): 5455-5466, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36398752

ABSTRACT

Heat treatment is an inevitable step in making meat and meat products ready for human consumption. Researches on ready-to-eat foods had shown that foods can also contain microplastics (MPs). The source of the presence of MPs in foods is: air, raw materials, food production stages, or plastics used in packaging. This study was carried out to evaluate the possible effects of the sous-vide (So-Vc) technique applied in rainbow trout (Oncorhynchus mykiss) fillets at different temperatures and time intervals on MPs degradation or migration mechanisms and the level of uptake by humans. For this purpose, 7 treatment temperature × 3 various cooking times and So-Vc technique were applied on rainbow trout fillets. Then, in these fillets, MP presence, size, and shape were researched, as well as polymer types and possible levels of MP uptake by humans were determined. In the analyses, 1.27 ± 0.54 MP/g was found in 1 g of fish tissue. Dimensionally, 67% of MPs was detected as <50 µm and 8% of 500-1000 µm. The dominant shape was determined as a fragment, and the color was black. Six polymer types were determined. The results showed that high temperature (> 65°C) applications promoted polymer degradation. MP migration from packaging material to fillets was not detected. By calculations made on these findings, the lowest intake level by a human was estimated as 6140 MPs units/year. The obtained data provided the initial data to explore and optimize the current understanding of thermally processed products in terms of MPs. This study proved that the sous vide method causes polymer degradation at high temperatures and longer time periods.


Subject(s)
Microplastics , Oncorhynchus mykiss , Animals , Humans , Microplastics/toxicity , Oncorhynchus mykiss/metabolism , Plastics , Meat , Cooking/methods
19.
Environ Mol Mutagen ; 63(6): 286-295, 2022 07.
Article in English | MEDLINE | ID: mdl-36053843

ABSTRACT

In this study, the neuroprotective action potential by ulexite (UX) (18.75 mg/L) against acetylferrocene (AFC) (3.82 mg/L) induced neurotoxicity was aimed to investigate in brain tissues of Oncorhynchus mykiss. For this purpose, the effects on neurotoxicity markers, proinflammatory cytokines, antioxidant immune system, DNA, and apoptosis mechanisms were assessed on brain tissues in the 48-96  h of the 96- trial period. In this research, it was determined that brain-derived nerve cell growth factor (BDNF) level and acetylcholinesterase (AChE) activity were inhibited in the brain tissue compared to the control group by AFC. In addition, inhibition in glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) values (which are antioxidant system biomarkers), and inductions in malondialdehyde (MDA) and myeloperoxidase (MPO) amounts (which are indicators of lipid peroxidation) were determined (p < 0.05) after exposure to AFC. And, while tumor necrosis factor-α (TNF-α) and IL-6 levels were increased in the AFC-exposed group, Nrf-2 levels were found to be remarkably decreased. Upregulation was also detected in 8-hydroxydeoxyguanosine (8-OHdG) and caspase-3 levels, which are related to DNA damage and apoptosis mechanism. On the contrary, UX (single/with AFC) suppressed the AChE and BDNF inhibition by AFC. Moreover, UX mitigated AFC-induced oxidative, inflammatory, and DNA damage and attenuated AFC-mediated neurotoxicity via activating Nrf2 signaling in fish. Collectively, our findings revealed that UX supplementation might exert beneficial effects and may be considered as a natural and promising neuroprotective agent against AFC-induced toxicity.


Subject(s)
Neuroprotective Agents , Oncorhynchus mykiss , 8-Hydroxy-2'-Deoxyguanosine , Acetylcholinesterase/metabolism , Acetylcholinesterase/pharmacology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Biomarkers/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Caspase 3/metabolism , Caspase 3/pharmacology , Catalase/metabolism , Ferrous Compounds , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/pharmacology , Interleukin-6/metabolism , Malondialdehyde , NF-E2-Related Factor 2 , Neuroprotective Agents/pharmacology , Oxidative Stress , Peroxidase/metabolism , Peroxidase/pharmacology , Superoxide Dismutase , Tumor Necrosis Factor-alpha
20.
Toxics ; 10(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36006107

ABSTRACT

Genetic, neuropathological and biochemical investigations have revealed meaningful relationships between aluminum (Al) exposure and neurotoxic and hematotoxic damage. Hence, intensive efforts are being made to minimize the harmful effects of Al. Moreover, boron compounds are used in a broad mix of industries, from cosmetics and pharmaceuticals to agriculture. They affect critical biological functions in cellular events and enzymatic reactions, as well as endocrinal and mineral metabolisms. There are limited dose-related data about boric acid (BA) and other boron compounds, including colemanite (Col), ulexite (UX) and borax (BX), which have commercial prominence. In this study, we evaluate boron compounds' genetic, cytological, biochemical and pathological effects against aluminum chloride (AlCl3)-induced hematotoxicity and neurotoxicity on different cell and animal model systems. First, we perform genotoxicity studies on in vivo rat bone marrow cells and peripheric human blood cultures. To analyze DNA and chromosome damage, we use single cell gel electrophoresis (SCGE or comet assay) and micronucleus (MN) and chromosome aberration (CA) assays. The nuclear division index (NDI) is used to monitor cytostasis. Second, we examine the biochemical parameters (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total antioxidant capacity (TAC) and total oxidative status (TOS)) to determine oxidative changes in blood and brain. Next, we assess the histopathological alterations by using light and electron microscopes. Our results show that Al increases oxidative stress and genetic damage in blood and brain in vivo and in vitro studies. Al also led to severe histopathological and ultrastructural alterations in the brain. However, the boron compounds alone did not cause adverse changes based on the above-studied parameters. Moreover, these compounds exhibit different levels of beneficial effects by removing the harmful impact of Al. The antioxidant, antigenotoxic and cytoprotective effects of boron compounds against Al-induced damage indicate that boron may have a high potential for use in medical purposes in humans. In conclusion, our analysis suggests that boron compounds (especially BA, BX and UX) can be administered to subjects to prevent neurodegenerative and hematological disorders at determined doses.

SELECTION OF CITATIONS
SEARCH DETAIL
...