Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Res ; 213: 113533, 2022 10.
Article in English | MEDLINE | ID: mdl-35690086

ABSTRACT

The growing global demand for non-ferrous metals has led to serious environmental issues involving uncovered mine site slag dumps that threaten the surrounding soils, surface waters, groundwater, and the atmosphere. Remediation of these slags using substitute cement materials for ordinary Portland cement (OPC) and precursors for alkali-activated materials (AAMs) can convert hazardous solid wastes into valuable construction materials, as well as to attain the desired solidification and stabilization (S/S) of heavy metal(loid)s (HM). This review discusses the current research on the effect of non-ferrous slags on the reaction mechanisms of the OPC and AAM. The S/S of HM from the non-ferrous slags in AAM and OPC is also reviewed. HM can be stabilized in these materials based on the complex salt effect and isomorphic effects. The major challenges faced in AAMs and OPC for HM stabilization include the long-term durability of the matrix (e.g., sulfate attack, stability of volume). The existing knowledge gaps and future trends for the sustainable application of non-ferrous slags are also discussed.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Alkalies , Construction Materials , Hazardous Waste , Recycling
2.
Environ Monit Assess ; 194(6): 437, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35583831

ABSTRACT

The objective of this study was to investigate the use of the acid production potential (AP) calculation factor and seven different S analysis methods in the preliminary mine waste characterization by analyzing and comparing 48 Finnish mine waste samples. Special attention was paid on mineralogical aspects and data produced in the exploration phase of a mining project.According to our results, the abundance of sulfide species other than pyrite in Finnish mine waste suggests that the factor to calculate the AP should be considered based on mineralogy and would often be below 31.25. Therefore, the mineralogy-based determination of S should be preferred. However, the determination of S based on scanning electron microscope (SEM) mineralogy includes some uncertainties. Underestimation of S content may appear if not all S-bearing mineral particles have been detected, or if the amount of S is low in general. This uncertainty appears to be especially related to the samples containing elevated (> 9 wt%) amounts of serpentine, diopside, augite, and/or hornblende. Risk of overestimating AP is related to samples containing high amounts (> 4.13 wt%) of S-bearing minerals. These uncertainties can be reduced by inspecting that the SEM mineralogy-based S concentrations are in line with the energy dispersive X-ray spectrometer data. The aqua regia extractable S concentrations, which are often available in the exploration phase, appeared to be usable in the preliminary waste rock AP assessment and often comparable with the analytical total S values in the Finnish waste rock samples, especially when the samples did not contain any sulfate minerals. In contrast, the analytical sulfide S and the X-ray fluorescence methods may lead to an underestimation of AP.


Subject(s)
Environmental Monitoring , Mining , Environmental Monitoring/methods , Minerals/analysis , Sulfides/analysis , Sulfur/analysis
3.
J Contam Hydrol ; 232: 103640, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32353562

ABSTRACT

This study was aimed at identifying and quantifying mixing proportions in surface waters downstream of historical Cu-W-F skarn mine tailings at Yxsjöberg, Sweden, using 18O, 2H, and 87Sr/86Sr isotopes. In addition, a simple mathematical model was developed to evaluate the consistency of the mixing calculations. Hydrochemical and isotopic data from 2 groundwater wells, 6 surface water and 2 rainwater sampling sites, spanning 6 sampling campaigns between May and October were used. Three mixed surface waters downstream of the tailings were identified, namely: C7, C11 and C14. C7 was directly influenced by groundwater from the tailings whereas C11 was also subsequently influenced by C7. C14 on the other hand, had contributions from C11. Sequential mixing calculations indicated that the contribution of the groundwater to C7 ranges from 1 to 17%. The subsequent contribution of C7 to C11 varied from 49 to 91% whereas C14 had contributions of C11 ranging between 16 and 56%. A strong agreement between the model data (MD) and measured raw data (RD) for C11 and C14 indicated the accuracy of the mixing calculations. Variations between the MD and RD at C7, however, was mainly due to sorption and reductive processes underneath the tailings, which tend to attenuate the amount of dissolved ions reaching the surface waters, resulting in a low ionic contribution of the tailings groundwater to the surface water. The low ionic contribution of the groundwater to C7 suggested that although the tailings impoundment is of environmental concern, its impact on the downstream surface waters is small. The results of this study suggest that mixing calculations in surface waters involving a closed system such as groundwater (as an end-member) must be treated with caution. It is recommended that the interpretation of such mixing results must be coupled with detailed knowledge of the potential hydrogeochemical processes along its flow paths.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Isotopes/analysis , Sweden , Water Pollutants, Chemical/analysis
4.
Environ Sci Pollut Res Int ; 27(6): 6180-6192, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31865574

ABSTRACT

More knowledge of the geochemical behavior of tungsten (W) and associated contamination risks is needed. Therefore, weathering of scheelite (CaWO4) and secondary sequestration and transport of W to groundwater in historical skarn tailings and surface water downstream of the tailings were studied. The tailings contained 920 mg/kg W, primarily in scheelite. Mineralogical and geochemical analyses were combined to elucidate the geochemical behavior of W in the tailings, and water samples were taken monthly during 2018 to monitor its mobility. In the tailings, a large peak of W was found at 1.5 m depth. There, 30 wt%. of W was present in easily reducible phases, indicating former scheelite weathering. Currently, W is being released from scheelite to water-soluble phases at 2.5 m depth. The release of WO42- is hypothetically attributed to anion exchange with CO32- released from calcite neutralizing acid produced from pyrrhotite oxidation in the upper tailings and transported downwards to pH conditions > 7. Higher concentrations of dissolved W were found in the groundwater and particulate W in downstream surface water than in reference water, but they were lower than current contamination thresholds. Tungsten showed correlations with hydrous ferric oxides (HFO) in both the tailings and surface water.


Subject(s)
Calcium Compounds/analysis , Environmental Monitoring , Soil Pollutants/analysis , Tungsten Compounds/analysis , Tungsten , Mining , Models, Chemical , Sulfides , Sweden , Weather
5.
Environ Sci Pollut Res Int ; 26(25): 25945-25957, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31273653

ABSTRACT

During the operation of a mine, waste rock is often deposited in heaps and usually left under ambient conditions allowing sulfides to oxidize. To focus on waste rock management for preventing acid rock drainage (ARD) formation rather than ARD treatment could avoid its generation and reduce lime consumption, costs, and sludge treatment. Leachates from 10 L laboratory test cells containing sulfide-rich (> 60% pyrite) waste rock with and without the addition of lime kiln dust (LKD) (5 wt.%) were compared to each other to evaluate the LKD's ability to maintain near neutral pH and reduce the sulfide oxidation. Leaching of solely waste rock generated an acidic leachate (pH < 1.3) with high concentrations of As (21 mg/L), Cu (20 mg/L), Fe (18 g/L), Mn (45 mg/L), Pb (856 µg/L), Sb (967 µg/L), S (17 g/L), and Zn (23 mg/L). Conversely, the addition of 5 wt.% LKD generated and maintained a near neutral pH along with decreasing of metal and metalloid concentrations by more than 99.9%. Decreased concentrations were most pronounced for As, Cu, Pb, and Zn while S was relatively high (100 mg/L) but decreasing throughout the time of leaching. The results from sequential extraction combined with element release, geochemical calculations, and Raman analysis suggest that S concentrations decreased due to decreasing sulfide oxidation rate, which led to gypsum dissolution. The result from this study shows that a limited amount of LKD, corresponding to 4% of the net neutralizing potential of the waste rock, can prevent the acceleration of sulfide oxidation and subsequent release of sulfate, metals, and metalloids but the quantity and long-term stability of secondary minerals formed needs to be evaluated and understood before this method can be applied at a larger scale.


Subject(s)
Calcium Compounds/chemistry , Dust/analysis , Iron/chemistry , Metalloids/analysis , Oxides/chemistry , Sulfates/chemistry , Sulfides/analysis , Hydrogen-Ion Concentration , Metalloids/chemistry , Metals/analysis , Metals/chemistry , Minerals/analysis , Minerals/chemistry , Oxidation-Reduction , Sulfides/chemistry
6.
Environ Sci Pollut Res Int ; 26(20): 20712-20730, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31104229

ABSTRACT

The best available technology for preventing the formation of acid drainage water from the sulfidic waste rock at mine closure aims to limit the oxygen access to the waste. There is, however, a concern that contaminants associated with secondary minerals become remobilized due to changing environmental conditions. Metal(loid) mobility from partially oxidized sulfidic waste rock under declining and limited oxygen conditions was studied in unsaturated column experiments. The concentrations of sulfate and metal(loid)s peaked coincidently with declining oxygen conditions from 100 to < 5 sat-% and to a lesser extent following a further decrease in the oxygen level during the experiment. However, the peak concentrations only lasted for a short time and were lower or in the similar concentration range as in the leachate from a reference column leached under atmospheric conditions. Despite the acid pH (~ 3), the overall quality of the leachate formed under limited oxygen conditions clearly improved compared with atmospheric conditions. In particular, the release of As was two orders of magnitude lower, while cationic metals such as Fe, Cu, Mn, and Zn also decreased, although to a lesser extent. Decreased sulfide oxidation is considered the primary reason for the improved water quality under limited oxygen conditions. Another reason may be the immobility of Fe with the incorporation of metal(loid)s in Fe(III) minerals, in contrast to the expected mobilization of Fe. The peaking metal(loid) concentrations are probably due to remobilization from solid Fe(III)-sulfate phases, while the relatively high concentrations of Al, Mn, and Zn under limited oxygen conditions were due to release from the adsorbed/exchangeable fraction. Despite the peaking metal(loid) concentrations during declining oxygen conditions, it is clear that the primary remediation goal is to prevent further sulfide oxidation.


Subject(s)
Environmental Restoration and Remediation/methods , Metalloids/chemistry , Metals/chemistry , Oxygen/analysis , Water Pollutants, Chemical/chemistry , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Metalloids/analysis , Metals/analysis , Minerals/analysis , Minerals/chemistry , Oxidation-Reduction , Sulfides/chemistry , Water Pollutants, Chemical/analysis
7.
Environ Pollut ; 247: 98-107, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30669085

ABSTRACT

Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.


Subject(s)
Bacteria/genetics , Biodegradation, Environmental , Genetic Variation , Metals/analysis , China , Iron/analysis , Microbiota , Oxidation-Reduction , Plants , Sulfides/analysis
8.
Environ Monit Assess ; 190(12): 719, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30426238

ABSTRACT

Acid rock drainage (ARD) is a major problem related to the management of mining wastes, especially concerning deposits containing sulphide minerals. Commonly used tests for ARD prediction include acid-base accounting (ABA) tests and the net acid generation (NAG) test. Since drainage quality largely depends on the ratio and quality of acid-producing and neutralising minerals, mineralogical calculations could also be used for ARD prediction. In this study, several Finnish waste rock sites were investigated and the performance of different static ARD test methods was evaluated and compared. At the target mine sites, pyrrhotite was the main mineral contributing to acid production (AP). Silicate minerals were the main contributors to the neutralisation potential (NP) at 60% of the investigated mine sites. Since silicate minerals appear to have a significant role in ARD generation at Finnish mine waste sites, the behaviour of these minerals should be more thoroughly investigated, especially in relation to the acid produced by pyrrhotite oxidation. In general, the NP of silicate minerals appears to be underestimated by laboratory measurements. For example, in the NAG test, the slower-reacting NP-contributing minerals might require a longer time to react than is specified in the currently used method. The results suggest that ARD prediction based on SEM mineralogical calculations is at least as accurate as the commonly used static laboratory methods.


Subject(s)
Environmental Monitoring/methods , Minerals/analysis , Silicates/analysis , Sulfides/analysis , Acids/analysis , Mining
9.
Sci Rep ; 8(1): 12570, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135589

ABSTRACT

The diversity and function of microorganisms have yet to be explored at non-ferrous metal mining facilities (NMMFs), which are the world's largest and potentially most toxic sources of co-existing metal(loid)s and flotation reagents (FRs). The diversity and inferred functions of different bacterial communities inhabiting two types of sites (active and abandoned) in Guangxi province (China) were investigated for the first time. Here we show that the structure and diversity of bacteria correlated with the types of mine sites, metal(loid)s, and FRs concentrations; and best correlated with the combination of pH, Cu, Pb, and Mn. Combined microbial coenobium may play a pivotal role in NMMFs microbial life. Arenimonas, specific in active mine sites and an acidophilic bacterium, carries functions able to cope with the extreme conditions, whereas Latescibacteria specific in abandoned sites can degrade organics. Such a bacterial consortium provides new insights to develop cost-effective remediation strategies of co-contaminated sites that currently remain intractable for bioremediation.


Subject(s)
Metals/metabolism , Microbiota , Mining , Organic Chemicals/metabolism , Soil Pollutants/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Biodiversity , China , Environmental Restoration and Remediation
10.
Environ Sci Pollut Res Int ; 25(21): 20809-20822, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29756187

ABSTRACT

Flooding of cemented paste backfill (CPB) filled mine workings is, commonly, a slow process and could lead to the formation of unsaturated zones within the CPB fillings. This facilitates the oxidation of sulfide minerals and thereby increases the risk of trace metal leaching. Pyrrhotitic tailings from a gold mine (cyanidation tailing (CT)), containing elevated concentrations of nickel (Ni), copper (Cu), and zinc (Zn), were mixed with cement and/or fly ash (1-3 wt%) to form CT-CPB mixtures. Pyrrhotite oxidation progressed more extensively during unsaturated conditions, where acidity resulted in dissolution of the Ni, Cu, and Zn associated with amorphous Fe precipitates and/or cementitious phases. The establishment of acidic, unsaturated conditions in CT-CBP:s with low fractions (1 wt%) of binders increased the Cu release (to be higher than that from CT), owing to the dissolution of Cu-associated amorphous Fe precipitates. In CT-CPB:s with relatively high proportions of binder, acidity from pyrrhotite oxidation was buffered to a greater extent. At this stage, Zn leaching increased due the occurrence of fly ash-specific Zn species soluble in alkaline conditions. Irrespective of binder proportion and water saturation level, the Ni and Zn release were lower, compared to that in CT. Fractions of Ni, Zn, and Cu associated with acid-soluble phases or amorphous Fe precipitates, susceptible to remobilization under acidic conditions, increased in tandem with binder fractions. Pyrrhotite oxidation occurred irrespective of the water saturation level in the CPB mixtures. That, in turn, poses an environmental risk, whereas a substantial proportion of Ni, Cu, and Zn was associated with acid-soluble phases.


Subject(s)
Construction Materials/analysis , Copper/analysis , Nickel/analysis , Zinc/analysis , Coal Ash/analysis , Gold/analysis , Minerals/chemistry , Oxidation-Reduction , Sulfides/chemistry
11.
Environ Sci Pollut Res Int ; 22(13): 10047-57, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25677786

ABSTRACT

To evaluate the potential suitability of digested sewage sludge (frequently termed biosolids) for use as underwater cover material for mine waste tailings, the degradability of biosolids at 20 - 22 °C under flooded anaerobic conditions was evaluated during incubation for 230 days. Leaching of elements from the flooded anaerobic system was also evaluated. Biosolid degradation was confirmed by the generation and accumulation of CH4 and CO2. Specifically, approximately 1.65 mmoL gas/g biosolids was generated as a result of incubation, corresponding to degradation of 7.68% of the organic matter, and the residue was stable at the end of the laboratory experiment. Under field conditions in northern Sweden, it is expected that the degradation rate will be much slower than that observed in the present study (Nason et al. Environ Earth Sci 70:30933105, 2013). Although the majority of biosolid fractions (>92%) were shown to be recalcitrant during the incubation period, long-term monitoring of further degradability of residue is necessary. The leaching results showed that most of the metals and metalloids leached from the biosolids at day 230 were below the limit value for non-hazardous waste, although Ni was the only element approximately three times higher than the limit value for inert material at the landfill site. In conclusion, biosolids have potential for use as covering material for underwater storage of tailings based on their biodegradability and leaching of elements.


Subject(s)
Environmental Restoration and Remediation/methods , Mining , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Metals , Sewage/chemistry , Sweden , Water Pollutants, Chemical/analysis
12.
J Environ Manage ; 139: 38-49, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24681363

ABSTRACT

The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings.


Subject(s)
Industrial Waste/analysis , Metals/analysis , Minerals/analysis , Sulfides/analysis , Coal Ash , Hydrogen-Ion Concentration , Metals/chemistry , Minerals/chemistry , Mining , Oxidation-Reduction , Sewage , Sulfides/chemistry
13.
J Hazard Mater ; 267: 245-54, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24462894

ABSTRACT

Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.


Subject(s)
Industrial Waste/analysis , Mining , Sulfides/chemistry , Coal Ash/chemistry , Hydrogen-Ion Concentration , Metals/analysis , Metals/chemistry , Oxidation-Reduction , Sewage/analysis , Soil Pollutants/analysis , Sweden , Water Pollutants, Chemical/analysis
14.
Environ Sci Pollut Res Int ; 21(11): 6836-44, 2014.
Article in English | MEDLINE | ID: mdl-24057964

ABSTRACT

Copper and iron isotope fractionation by plant uptake and translocation is a matter of current research. As a way to apply the use of Cu and Fe stable isotopes in the phytoremediation of contaminated sites, the effects of organic amendment and microbial addition in a mine-spoiled soil seeded with Helianthus annuus in pot experiments and field trials were studied. Results show that the addition of a microbial consortium of ten bacterial strains has an influence on Cu and Fe isotope fractionation by the uptake and translocation in pot experiments, with an increase in average of 0.99 ‰ for the δ(65)Cu values from soil to roots. In the field trial, the amendment with the addition of bacteria and mycorrhiza as single and double inoculation enriches the leaves in (65)Cu compared to the soil. As a result of the same trial, the δ(56)Fe values in the leaves are lower than those from the bulk soil, although some differences are seen according to the amendment used. Siderophores, possibly released by the bacterial consortium, can be responsible for this change in the Cu and Fe fractionation. The overall isotopic fractionation trend for Cu and Fe does not vary for pot and field experiments with or without bacteria. However, variations in specific metabolic pathways related to metal-organic complexation and weathering can modify particular isotopic signatures.


Subject(s)
Copper/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Copper/analysis , Helianthus/metabolism , Helianthus/microbiology , Iron Isotopes/metabolism , Microbial Consortia , Mining , Plant Leaves/metabolism , Plant Roots/metabolism , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
15.
Environ Sci Pollut Res Int ; 20(11): 7907-16, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23740301

ABSTRACT

Backfilling of open pit with sulfidic waste rock followed by inundation is a common method for reducing sulfide oxidation after mine closure. This approach can be complemented by mixing the waste rock with alkaline materials from pulp and steel mills to increase the system's neutralization potential. Leachates from 1 m3 tanks containing sulfide-rich (ca.30 wt %) waste rock formed under dry and water saturated conditions under laboratory conditions were characterized and compared to those formed from mixtures. The waste rock leachate produced an acidic leachate (pH<2) with high concentrations of As (65 mg/L), Cu (6 mg/L), and Zn (150 mg/L) after 258 days. The leachate from water-saturated waste rock had lower concentrations of As and Cu (<2 µg/L), Pb and Zn (20 µg/L and 5 mg/L), respectively, and its pH was around 6. Crushed (<6 mm) waste rock mixed with different fractions (1-5 wt %) of green liquid dregs, fly ash, mesa lime, and argon oxygen decarburization (AOD) slag was leached on a small scale for 65 day, and showed near-neutral pH values, except for mixtures of waste rock with AOD slag and fly ash (5% w/w) which were more basic (pH>9). The decrease of elemental concentration in the leachate was most pronounced for Pb and Zn, while Al and S were relatively high. Overall, the results obtained were promising and suggest that alkaline by-products could be useful additives for minimizing ARD formation.


Subject(s)
Environmental Restoration and Remediation/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Calcium Compounds/chemistry , Coal Ash/chemistry , Hydrogen-Ion Concentration , Metallurgy , Oxides/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods
16.
J Hazard Mater ; 244-245: 180-94, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23246954

ABSTRACT

In this study, four ten years test areas with covered tailings were geochemically evaluated. Three areas were covered with a fly ash and an overlying sludge layer, and one only with a sludge cover, originating from paper mills. The accumulation of As, Fe and Pb in sludge layers, originating from air-borne dust and the depletion of K, Na and P from both cover layers were observed. High release of elements from tailings was observed in the comparison profile due to oxidation and weathering of tailings. In only sludge covered area, the leaching of elements from tailings decreased. In the profiles with thin ash (20 cm and 30 cm), most elements were retained in tailings with pH 7-9. In the profile with the thickest ash (50 cm), elements such as As, Cd, Cu, Mg, Mn, Pb, S and Zn were depleted in the uppermost tailings with pH above 11 and retained deeper in the zone with pH 7-8, which implied that large quantities of fly ash increased the oxidation and weathering of tailings and mobility of elements. Elements excluding K, never reached the groundwater in high concentrations in the covered areas, while the comparison area had high Ca, K, Mn and S concentrations.


Subject(s)
Arsenic/analysis , Coal Ash , Industrial Waste , Metals/analysis , Waste Management/methods , Water Pollutants, Chemical/analysis , Arsenic/chemistry , Carbonates , Coal Ash/analysis , Groundwater/analysis , Industrial Waste/analysis , Metals/chemistry , Mining , Paper , Sulfides , Water Pollutants, Chemical/chemistry
17.
J Environ Monit ; 14(8): 2245-53, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22777533

ABSTRACT

Sulphidic residual products from ore processing may produce acid rock drainage, when exposed to oxygen and water. Predictions of the magnitude of ARD and sulphide oxidation rates are of great importance in mine planning because they can be used to minimize or eliminate ARD and the associated economic and environmental costs. To address the lack of field data of sulphide oxidation rate in fresh sulphide-rich tailings under near-neutral conditions, determination and simulation of the rate was performed in pilot-scale at Kristineberg, northern Sweden. The quality of the drainage water was monitored, along with oxygen and carbon dioxide concentrations. The chemical composition of the solid tailings was also determined. The field data were compared to predictions from simulations of pyrite oxidation using a 1-D numerical model. The simulations' estimates of the amount of Fe and S released over a seven year period (52 kg and 178 kg, respectively) were in reasonably good agreement with those obtained by analysing the tailings (34 kg and 155 kg, respectively). The discrepancy is probably due to the formation of secondary precipitates such as iron hydroxides and gypsum; which are not accounted for in the model. The observed mass transport of Fe and S (0.05 and 1.0 kg per year, respectively) was much lower than expected on the basis of the simulations and the core data. Neutralization reactions involving carbonates in the tailings result in a near-neutral pH at all depths except at the oxidation front (pH < 5), indicating that the dissolution of carbonates was too slow for the acid to be neutralized, which instead neutralized deeper down in the tailings. This was also indicated by the reduced abundance of solid Ca at greater depths and the high levels of carbon dioxide both of which are consistent with the dissolution of carbonates. It could be concluded that the near-neutral pH in the tailings has no decreasing effect on the rate of sulphide oxidation, but does reduce the concentrations of dissolved elements in the drainage water due to the formation of secondary minerals. This means that sulphide oxidation rates may be underestimated if determined from drainage alone.


Subject(s)
Iron/chemistry , Mining , Soil Pollutants/chemistry , Sulfides/chemistry , Environmental Monitoring , Hydrogen-Ion Concentration , Oxidation-Reduction , Sweden
18.
Sci Total Environ ; 408(6): 1386-92, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19939438

ABSTRACT

Tailings containing pyrrhotite were deposited in an impoundment at a copper mine at Laver, Northern Sweden, which operated between 1936 and 1946. Since then the oxidation of sulphides has acidified recipient water courses and contaminated them with metals. Measurements from surface water sampled in 1993, 2001 and 2004-05 from a brook into which the tailing impoundment drains indicate that the amounts of sulphide-associated elements such as Cu, S and Zn released into the brook have decreased over time, while pH has increased. The mass transport of S in the brook during 1993 and 2001 corresponded well with the amount of S estimated to be released from the tailings by oxidation. Secondary precipitates such as covellite and gypsum, which can trap sulphur, were shown in earlier studies to be present in only low amounts. The annual release of elements from the tailings was estimated from the volume of tailings assumed to oxidise each year, which depends on movement of the oxidation front with time. The results indicate that the oxidation rate in the tailings has decreased over time, which may be due to the increased distance over which oxygen needs to diffuse to reach unoxidised sulphide grains, or their cores, in the tailings.


Subject(s)
Copper/chemistry , Industrial Waste/analysis , Mining , Sulfides/chemistry , Water Pollutants, Chemical/analysis , Copper/analysis , Environmental Monitoring , Kinetics , Oxidation-Reduction/drug effects , Rivers/chemistry , Sulfides/analysis , Sweden , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...