Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Med Oncol ; 41(3): 70, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340190

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the world's largest health concerns with growing global incidence and mortality. The potential value of the neurokinin-1 receptor as a therapeutic target has been reported in several tumor types, including CRC. Here we examined the potential anti-tumor effects of a clinically approved neurokinin-1 receptor antagonist, aprepitant, alone and its combination with 5-Fluorouracil (5-FU) as a first choice CRC chemotherapeutic drug, in both in vitro and in vivo models of CRC. METHODS: MTT assay was employed for assessing cell proliferation. mRNA expression levels were determined by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis of apoptosis was performed using an Annexin-V/propidium iodide assay kit. We finally conducted an in vivo experiment in a mouse model of CRC to confirm the in vitro antiproliferative activity of aprepitant and 5-FU. RESULTS: We found that aprepitant and 5-FU significantly reduced CRC cell viability. The combination of drugs exhibited potent synergistic growth inhibitory effects on CRC cells. Moreover, aprepitant and 5-FU induced apoptosis and altered the levels of apoptotic genes (up-regulation of Bax, and p53 along with downregulation of Bcl-2). Importantly, the aprepitant and 5-FU combination showed a more pronounced impact on apoptosis and associated genes than either of the agents alone. Furthermore, aprepitant reduced tumor growth in vivo and led to significantly longer survival time, and this effect was more prominent when using the aprepitant and 5-FU combination. CONCLUSIONS: Collectively, combinatory treatment with aprepitant and 5-FU potentially exerts synergistic growth inhibition and apoptosis induction in CRC, deserving further consideration as a novel strategy for CRC patients.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Animals , Mice , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Aprepitant/pharmacology , Colorectal Neoplasms/pathology , Xenograft Model Antitumor Assays , Drug Synergism , Apoptosis , Cell Proliferation , Cell Line, Tumor
2.
Mol Biol Rep ; 51(1): 360, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402341

ABSTRACT

BACKGROUND: The involvement of malfunctioning glutamate systems in various central nervous system (CNS) disorders is widely acknowledged. Urolithin B, known for its neuroprotective and antioxidant properties, has shown potential as a therapeutic agent for these disorders. However, little is known about its protective effects against glutamate-induced toxicity in PC12 cells. Therefore, in this study, for the first time we aimed to investigate the ability of Urolithin B to reduce the cytotoxic effects of glutamate on PC12 cells. METHODS: Different non-toxic concentrations of urolithin B were applied to PC12 cells for 24 h before exposure to glutamate (10 mM). The cells were then analyzed for cell viability, intracellular reactive oxygen species (ROS), cell cycle arrest, apoptosis, and the expression of Bax and Bcl-2 genes. RESULTS: The results of MTT assay showed that glutamate at a concentration of 10 mM and urolithin B at a concentration of 114 µM can reduce PC12 cell viability by 50%. However, urolithin B at non-toxic concentrations of 4 and 8 µM significantly reduced glutamate-induced cytotoxicity (p < 0.01). Interestingly, treatment with glutamate significantly enhanced the intracellular ROS levels and apoptosis rate in PC12 cells, while pre-treatment with non-toxic concentrations of urolithin B significantly reduced these cytotoxic effects. The results also showed that pre-treatment with urolithin B can decrease the Bax (p < 0.05) and increase the Bcl-2 (p < 0.01) gene expression, which was dysregulated by glutamate. CONCLUSIONS: Taken together, urolithin B may play a protective role through reducing oxidative stress and apoptosis against glutamate-induced toxicity in PC12 cells, which merits further investigations.


Subject(s)
Coumarins , Glutamic Acid , Neuroprotective Agents , Rats , Animals , Reactive Oxygen Species/metabolism , PC12 Cells , Glutamic Acid/toxicity , Glutamic Acid/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Oxidative Stress , Apoptosis , Cell Survival , Neuroprotective Agents/pharmacology
3.
Appl Biochem Biotechnol ; 195(12): 7796-7807, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37093533

ABSTRACT

Prostate cancer is one of the main global health threats for men which is in close association with chronic inflammation. Neuropeptide substance P (SP), acting through neurokinin receptor (NK-1R), induces various pro-inflammatory responses which are strongly involved in the pathogenesis of several diseases as well as cancer. Therefore, we aimed to investigate the pro-inflammatory functions of the SP/NK1R complex in prostate cancer and the therapeutic effects of its inhibition by NK-1R antagonist, aprepitant, in vitro. MTT assay was conducted for the cytotoxicity assessment of aprepitant in prostate cancer cells. The protein expression levels were evaluated by Western blot assay. Quantitative real-time PCR (qRT-PCR) was applied to measure mRNA expression levels of pro-inflammatory cytokines. Concurrently, the protein concentrations of pro-inflammatory cytokines were also analyzed by enzyme-linked immunosorbent assay. We observed that SP increased the levels of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), while treatment with aprepitant reduced the effects of SP. We also indicated that SP increased the protein levels of nuclear factor-kappa B (NF-κB), as the main regulator of inflammatory processes, and also an NF-κB target gene, cyclooxygenase 2 (COX-2) in prostate cancer cells, while treatment with aprepitant reversed these effects. Taken together, our findings highlight the importance of the SP/NK1R system in the modulation of pro-inflammatory responses in prostate cancer cells and suggest that aprepitant may be developed as a novel anti-inflammatory agent for the management of cancer-associated inflammation.


Subject(s)
NF-kappa B , Prostatic Neoplasms , Male , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Substance P/metabolism , Substance P/pharmacology , Substance P/therapeutic use , Signal Transduction , Aprepitant/pharmacology , Aprepitant/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology , Interleukin-1beta/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics
4.
BMC Complement Med Ther ; 23(1): 27, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36721147

ABSTRACT

BACKGROUND: Adhesion band formation is a common cause of morbidity for patients undergoing surgeries. Anti-inflammatory and anti-fibrotic properties of curcumin, a pharmacologically active component of Curcuma longa, have been investigated in several studies. The aim of this study is to explore the therapeutic potential of curcumin in attenuating post-operative adhesion band (PSAB) formation in both peritoneal and peritendinous surgeries in animal models. METHODS: Bio-mechanical, histological and quantitative evaluation of inflammation, and total fibrosis scores were graded and measured in the presence and absence of phytosomal curcumin. RESULTS: Results showed that phytosomal curcumin significantly decreased severity, length, density and tolerance of mobility of peritendinous adhesions as well as incidence and severity of abdominal fibrotic bands post-surgery. Curcumin may decrease inflammation by attenuating recruitment of inflammatory cells and regulating oxidant/anti-oxidant balance in post-operative tissue samples. Moreover, markedly lower fibrosis scores were obtained in the adhesive tissues of phytosomal curcumin-treated groups which correlated with a significant decrease in quantity, quality and grading of fibers, and collagen deposition in animal models. CONCLUSION: These results suggest that protective effects of phytosomal curcumin against PSAB formation is partially mediated by decreasing inflammation and fibrosis at site of surgery. Further studies are needed to investigate the therapeutic potential of this molecule in preventing PSAB.


Subject(s)
Curcumin , Animals , Curcumin/pharmacology , Tissue Adhesions/drug therapy , Inflammation , Models, Animal
5.
Nanotechnology ; 34(21)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36535007

ABSTRACT

Cancer has recently increased the death toll worldwide owing to inadequate therapy and decreased drug bioavailability. Long-term and untargeted chemotherapeutic exposure causes toxicity to healthy cells and drug resistance. These challenges necessitate the development of new methods to increase drug efficacy. Nanotechnology is an emerging field in the engineering of new drug delivery platforms. The phytochemical epigallocatechin gallate (EGCG), the main component of green tea extract and its most bioactive component, offers novel approaches to cancer cell eradication. The current review focuses on the nanogold-based carriers containing EGCG, with an emphasis on the chemotherapeutic effects of EGCG in cancer treatment. The nanoscale vehicle may improve the EGCG solubility and bioavailability while overcoming constraints and cellular barriers. This article reviewed the phytochemical EGCG-based gold nanoplatforms and their major anticancer applications, both individually, and in combination therapy in a few cases.


Subject(s)
Catechin , Neoplasms , Humans , Neoplasms/drug therapy , Drug Delivery Systems , Catechin/pharmacology , Catechin/therapeutic use , Biological Availability , Tea
6.
Cell Biochem Biophys ; 80(4): 819-827, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36197642

ABSTRACT

Ovarian cancer is the seventh most common cancer globally, and the second most common cancer among women with significant mortality. Toward this end, it is shown that substance P (SP) is involved in tumor initiation and progression through the neurokinin-1 receptor (NK1R). However, the exact molecular mechanism of the SP/NK1R system in ovarian cancer is not yet fully clarified. In this in vitro study, we decided to investigate the effect of the SP/NK1R system and blockage of NK1R by its specific antagonist (Aprepitant) on the proliferation of ovarian cancer cells as well as the alteration of inflammatory pathways. Our results revealed that Aprepitant stimulated apoptotic cell death and attenuated inflammation of ovarian cancer cells through the NF-kB and P53 signaling pathways. After treatment with Aprepitant, the expression of downstream anti-apoptotic genes related to the NF-kB pathway (survivine and bcl2) was decreased. However, we indicated the positive effect of SP on the proliferation of ovarian cancer cells by inducing the expression of NF-kB protein and NF-kB anti-apoptotic target genes. Moreover, Pro-apoptotic p53 target genes (P21 and Bax) were increased through aprepitant treatment, while SP attenuated these genes' expression. Besides, ROS generation in ovarian cancer cells after treatment with SP induced, while blocking of NK1R with Aprepitant reduced the level of ROS generation. Given this, our data suggest that this NK1R might be used as an important therapeutic target in ovarian cancer and Aprepitant could be considered a new drug in ovarian cancer therapy.


Subject(s)
Ovarian Neoplasms , Receptors, Neurokinin-1 , Apoptosis , Aprepitant/pharmacology , Cell Line, Tumor , Cell Proliferation , Female , Humans , NF-kappa B/metabolism , Ovarian Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Substance P/metabolism , Substance P/pharmacology , Tumor Suppressor Protein p53 , bcl-2-Associated X Protein/metabolism
7.
Biomed Res Int ; 2022: 8082608, 2022.
Article in English | MEDLINE | ID: mdl-36177059

ABSTRACT

Background: Osteosarcoma, the most frequent osteogenic malignancy, has become a serious public health challenge due to its high morbidity rates and metastatic potential. Recently, the neurokinin-1 receptor (NK-1R) is proved to be a promising target in cancer therapy. This study is aimed at determining the effect of aprepitant, a safe and Food and Drug Administration (FDA) approved NK-1R antagonist, on osteosarcoma cell migration and metastasis, and to explore its underlying mechanism of action. Methods: Colorimetric MTT assay was employed to assess cell viability and cytotoxicity. A wound-healing assay was used to examine migration ability. The desired genes' protein and mRNA expression levels were measured by western blot assay and quantitative real-time PCR (qRT-PCR), respectively. Gelatinase activity was also measured by zymography. Results: We found that aprepitant inhibited MG-63 osteosarcoma cell viability in a dose-dependent manner. We also observed that aprepitant inhibited the migrative phenotype of osteosarcoma cells and reduced the expression levels and activities of matrix metalloproteinases (MMP-2 and MMP-9). Aprepitant also reduced the expression of an angiogenic factor, VEGF protein, and NF-κB as an important transcriptional regulator of metastasis-related genes. Conclusion: Collectively, our observations indicate that aprepitant modulates the metastatic behavior of human osteosarcoma cells, which may be applied to an effective therapeutic approach for patients with metastatic osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Angiogenesis Inducing Agents/pharmacology , Aprepitant/pharmacology , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B , Neurokinin-1 Receptor Antagonists/pharmacology , Neurokinin-1 Receptor Antagonists/therapeutic use , Osteosarcoma/pathology , RNA, Messenger/genetics , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacology
8.
Mol Biol Rep ; 49(10): 9307-9314, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35960409

ABSTRACT

BACKGROUND: Substance P (SP) has a crucial role in cancer initiation and progression via binding to its specific receptor (NK1R). Various evidence confirmed the overexpression of NK1R and SP in the tissue of multiple cancers, including ovarian cancer. Despite numerous studies, the mechanism of the SP/NK1R system on migration and angiogenesis of ovarian cancer cells has not yet been deciphered. In this study, considering the critical factors in cell migration (MMP-2, MMP-9) and angiogenesis (VEGF, VEGFR), we investigated the possible mechanism of this system in inducing migration and angiogenesis of ovarian cancer cells. METHODS AND RESULTS: First, the resazurin assay was conducted to evaluate the cytotoxic effect of aprepitant (NK1R antagonist) on the viability of A2780 ovarian cancer cells. After that, the impact of this system and aprepitant on the mRNA expression of the factors mentioned above were studied using RT-PCR. Besides, the scratch assay was performed to confirm the effect of the SP/NK-1R system and aprepitant on cell migration. Our results implied that this system induced cell migration and angiogenesis by increasing the mRNA expression of MMP-2, MMP-9, VEGF, and VEGFR. The obtained results from the scratch assay also confirmed the positive effect of this system on cell migration. Meanwhile, the blocking of NK1R by aprepitant suppresses the SP effects on cell migration and angiogenesis. CONCLUSIONS: Overall, the SP/NK1R system plays a vital role in ovarian cancer progression, and the inhibition of NK1Rusing aprepitant could inhibit the spread of ovarian cancer cells through metastasis and angiogenesis.


Subject(s)
Ovarian Neoplasms , Substance P , Aprepitant/pharmacology , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Female , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , RNA, Messenger , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Receptors, Vascular Endothelial Growth Factor , Substance P/pharmacology , Vascular Endothelial Growth Factor A/genetics
9.
Life Sci ; 296: 120448, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35247438

ABSTRACT

Oxidative stress which refers to redox imbalance with increased generation of reactive oxygen species (ROS) has been associated with the pathophysiology of diverse disease conditions. Recently, a close, yet not fully understood, relation between oxidative stress and neuropeptides, in particular, substance P (SP), has been reported in certain conditions. SP has been shown to affect the cellular redox environment through activation of neurokinin-1receptor (NK1R). It seems that SP/NK1R system and oxidative stress can act either synergistically or antagonistically in a context-dependent manner, thereby, influencing the pathology of various clinical disorders either destructively or protectively. Importantly, the interactions between oxidative stress and SP/NK1R system can be pharmacologically targeted. Therefore, a better understanding of the redox modulatory properties of SP/NK1R signaling will pave the way for identifying new therapeutic possibilities for attenuating oxidative stress-mediated damage. Towards this end, we performed a comprehensive search through PubMed/Medline and Scopus databases and discussed all related existing literature regarding the interplay between oxidative stress and SP/NK1R system as well as their implication in various clinical disorders, to provide a clear view and hence better management of oxidative damage.


Subject(s)
Neurokinin-1 Receptor Antagonists/pharmacology , Oxidative Stress/physiology , Receptors, Neurokinin-1/metabolism , Stress, Psychological/metabolism , Substance P/metabolism , Animals , Humans , Magnesium Deficiency/metabolism , Neurokinin-1 Receptor Antagonists/therapeutic use , Oxidation-Reduction , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...