Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
J Med Chem ; 63(17): 9300-9315, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787140

ABSTRACT

The protein kinase PfCLK3 plays a critical role in the regulation of malarial parasite RNA splicing and is essential for the survival of blood stage Plasmodium falciparum. We recently validated PfCLK3 as a drug target in malaria that offers prophylactic, transmission blocking, and curative potential. Herein, we describe the synthesis of our initial hit TCMDC-135051 (1) and efforts to establish a structure-activity relationship with a 7-azaindole-based series. A total of 14 analogues were assessed in a time-resolved fluorescence energy transfer assay against the full-length recombinant protein kinase PfCLK3, and 11 analogues were further assessed in asexual 3D7 (chloroquine-sensitive) strains of P. falciparum parasites. SAR relating to rings A and B was established. These data together with analysis of activity against parasites collected from patients in the field suggest that TCMDC-135051 (1) is a promising lead compound for the development of new antimalarials with a novel mechanism of action targeting PfCLK3.


Subject(s)
Antimalarials/pharmacology , Drug Design , Plasmodium falciparum/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Antimalarials/chemical synthesis , Antimalarials/chemistry , Models, Molecular , Plasmodium falciparum/drug effects , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/chemistry , Structure-Activity Relationship
3.
Science ; 365(6456)2019 08 30.
Article in English | MEDLINE | ID: mdl-31467193

ABSTRACT

The requirement for next-generation antimalarials to be both curative and transmission-blocking necessitates the identification of previously undiscovered druggable molecular pathways. We identified a selective inhibitor of the Plasmodium falciparum protein kinase PfCLK3, which we used in combination with chemogenetics to validate PfCLK3 as a drug target acting at multiple parasite life stages. Consistent with a role for PfCLK3 in RNA splicing, inhibition resulted in the down-regulation of more than 400 essential parasite genes. Inhibition of PfCLK3 mediated rapid killing of asexual liver- and blood-stage P. falciparum and blockade of gametocyte development, thereby preventing transmission, and also showed parasiticidal activity against P. berghei and P. knowlesi Hence, our data establish PfCLK3 as a target for drugs, with the potential to offer a cure-to be prophylactic and transmission blocking in malaria.


Subject(s)
Antimalarials/pharmacology , Molecular Targeted Therapy , Plasmodium falciparum/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Animals , Antimalarials/chemistry , Antimalarials/isolation & purification , Antimalarials/therapeutic use , Gametogenesis/drug effects , High-Throughput Screening Assays , Mice , Mice, Inbred BALB C , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Kinase Inhibitors/isolation & purification , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Protozoan Proteins/genetics , RNA Splicing/genetics , Small Molecule Libraries/pharmacology
4.
Biochim Biophys Acta ; 1854(10 Pt B): 1650-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26143498

ABSTRACT

Until very recently there has been very little information about the phospho-signalling pathways in apicomplexan parasites including the most virulent species of human malaria parasite, Plasmodium falciparum. With the advancement of mass spectrometry-based phosphoproteomics and the development of chemical genetic approaches to target specific parasite protein kinases, the complexity of the essential role played by phosphorylation in maintaining the viability of apicomplexan parasites is now being revealed. This review will describe these recent advances and will discuss how these approaches can be used to validate parasite protein kinases as drug targets and to determine the on- and off-target action of protein kinase inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Subject(s)
Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/genetics , Animals , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mass Spectrometry , Phosphorylation , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Protein Kinase Inhibitors/chemistry , Protein Kinases/biosynthesis , Protein Kinases/chemistry , Protein Kinases/metabolism , Proteomics , Signal Transduction/drug effects
5.
Nat Commun ; 6: 7285, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26149123

ABSTRACT

Our understanding of the key phosphorylation-dependent signalling pathways in the human malaria parasite, Plasmodium falciparum, remains rudimentary. Here we address this issue for the essential cGMP-dependent protein kinase, PfPKG. By employing chemical and genetic tools in combination with quantitative global phosphoproteomics, we identify the phosphorylation sites on 69 proteins that are direct or indirect cellular targets for PfPKG. These PfPKG targets include proteins involved in cell signalling, proteolysis, gene regulation, protein export and ion and protein transport, indicating that cGMP/PfPKG acts as a signalling hub that plays a central role in a number of core parasite processes. We also show that PfPKG activity is required for parasite invasion. This correlates with the finding that the calcium-dependent protein kinase, PfCDPK1, is phosphorylated by PfPKG, as are components of the actomyosin complex, providing mechanistic insight into the essential role of PfPKG in parasite egress and invasion.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Phosphoproteins/metabolism , Plasmodium falciparum/enzymology , Proteomics/methods , Calcium Signaling/physiology , Cyclic GMP-Dependent Protein Kinases/genetics , Erythrocytes/physiology , Gene Expression Regulation, Enzymologic , Phosphoproteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schizonts/physiology
6.
PLoS One ; 9(9): e105732, 2014.
Article in English | MEDLINE | ID: mdl-25188378

ABSTRACT

Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-ß-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Animals , Gene Expression Regulation, Developmental , Genes, Protozoan , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Phosphorylation , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Structural Homology, Protein
7.
Nat Commun ; 2: 565, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22127061

ABSTRACT

The role of protein phosphorylation in the life cycle of malaria parasites is slowly emerging. Here we combine global phospho-proteomic analysis with kinome-wide reverse genetics to assess the importance of protein phosphorylation in Plasmodium falciparum asexual proliferation. We identify 1177 phosphorylation sites on 650 parasite proteins that are involved in a wide range of general cellular activities such as DNA synthesis, transcription and metabolism as well as key parasite processes such as invasion and cyto-adherence. Several parasite protein kinases are themselves phosphorylated on putative regulatory residues, including tyrosines in the activation loop of PfGSK3 and PfCLK3; we show that phosphorylation of PfCLK3 Y526 is essential for full kinase activity. A kinome-wide reverse genetics strategy identified 36 parasite kinases as likely essential for erythrocytic schizogony. These studies not only reveal processes that are regulated by protein phosphorylation, but also define potential anti-malarial drug targets within the parasite kinome.


Subject(s)
Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Proteomics/methods , Protozoan Proteins/metabolism , Animals , Humans , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...