Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2017: 1969525, 2017.
Article in English | MEDLINE | ID: mdl-28349055

ABSTRACT

Dried rhizome of Bergenia ligulata (pashanbhed) is commonly used as a traditional herbal medicine with a wide range of therapeutic applications including urolithiasis. Aqueous extract of B. ligulata was prepared through maceration followed by decoction (mother extract, 35.9% w/w). Further, polarity based fractions were prepared successively from mother extract which yielded 3.4, 2.9, 5.4, 7.5, and 11.3% w/w of hexane, toluene, dichloromethane (DCM), n-butanol, and water fractions, respectively. The in vitro, ex vivo, and real-time antiurolithiasis activity of mother extract and fractions were carried out using aggregation assay in synthetic urine and in rat plasma. The study revealed that DCM fraction has significantly (p < 0.05) greater inhibitory potential than other fractions. Ethylene glycol in drinking water (0.75%, v/v) for 28 days was used for induction of urolithiasis and the curative effects of mother extract and DCM fraction were checked for the level of oxalate, calcium, creatinine, uric acid, and urea of both urine and serum. Treatment with mother extract and DCM fraction at a dose of 185 mg/kg and 7 mg/kg, respectively, in ethylene glycol induced rats resulted in a significant (p < 0.05) decrease in serum and urine markers. Histological study revealed lower number of calcium oxalate deposits with minimum damage in the kidneys of mother extract and DCM fraction treated rats. This result provides a scientific basis for its traditional claims.


Subject(s)
Antioxidants/administration & dosage , Kidney Calculi/drug therapy , Plant Extracts/administration & dosage , Saxifragaceae/chemistry , Urolithiasis/drug therapy , Animals , Antioxidants/chemistry , Disease Models, Animal , Ethylene Glycol/toxicity , Humans , Kidney Calculi/chemically induced , Kidney Calculi/pathology , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Rats , Urolithiasis/chemically induced , Urolithiasis/pathology
2.
J Ethnopharmacol ; 197: 157-164, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-27469200

ABSTRACT

ETHNO-PHARMACOLOGICAL RELEVANCE: Picrosides I, II and apocynin are the main active principles present in the roots and rhizomes of Picrorhiza kurroa Royle ex. Benth (Kutki). Ethno-medicinally, the plant is used for the treatment of liver, upper respiratory tract disorders and dyspepsia, since long in Ayurveda. AIM OF THE STUDY: This study attempts to determine the pharmacokinetic profile of picrosides I, II and apocynin in rats after oral administration of iridoid enriched fraction (IRF) and to recognize the pattern of its metabolites as such in IRF and in plasma. MATERIALS AND METHODS: A simple, precise, specific and sensitive RP-HPLC method was developed for simultaneous quantification of picrosides I, II and apocynin in rat plasma and in plant extract. Acetonitrile (ACN) and water was used as a solvent system with a gradient elution for pharmacokinetic studies using HPLC-PDA (Flow rate: 1.0mL/min) and metabolic profiling through UPLC-MS (Flow rate: 0.5mL/min) in selected reaction monitoring. A comparative study was performed in order to recognize the pattern and fate of metabolites in rat plasma up to 24h after single oral administration of IRF. RESULTS: Developed method produced more than 85% recovery of the targeted metabolites in rat plasma. The content of picrosides I, II and apocynin in IRF were found 5.7%, 18.3% and 27.3% w/w, respectively. The mean plasma concentration versus time profiles of picroside I, II and apocynin resulted in peak plasma concentration (Cmax) 244.9, 104.6 and 504.2ng/mL with half-life (t1/2) 14, 8 and 6h, respectively. Other pharmacokinetic parameters such as time to reach Cmax (tmax), area under curve (AUC), absorption (ka) and elimination (ke) constant, volume of distribution (Vd) were also determined. Pattern recognition analysis showed fate of 18 metabolites in rat plasma up to 24h out of 26 present in IRF. CONCLUSION: The information gained from this study postulates the basic pharmacokinetic profiling of picroside I, II and apocynin as well as fate of other metabolites after oral administration of IRF, demonstrating scientific basis of its traditional use in Ayurveda.


Subject(s)
Iridoids/metabolism , Iridoids/pharmacokinetics , Picrorhiza/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacokinetics , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Acetophenones/blood , Administration, Oral , Animals , Cinnamates/blood , Half-Life , Iridoid Glucosides/blood , Iridoids/chemistry , Male , Medicine, Ayurvedic , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Rats , Rats, Wistar , Rhizome/chemistry , Rhizome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...