Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(1): 1562-1575, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38047999

ABSTRACT

Biochar (BC) and humic acid (HA) are well-documented in metal/metalloid detoxification, but their regulatory role in conferring plant oxidative stress under arsenic (As) stress is poorly understood. Therefore, we aimed at investigating the role of BC and HA (0.2 and 0.4 g kg-1 soil) in the detoxification of As (0.25 mM sodium arsenate) toxicity in rice (Oryza sativa L. cv. BRRI dhan75). Arsenic exhibited an increased lipid peroxidation, hydrogen peroxide, electrolyte leakage, and proline content which were 32, 30, 9, and 89% higher compared to control. In addition, the antioxidant defense system of rice consisting of non-enzyme antioxidants (18 and 43% decrease in ascorbate and glutathione content) and enzyme activities (23-50% reduction over control) was decreased as a result of As toxicity. The damaging effect of As was prominent in plant height, biomass acquisition, tiller number, and relative water content. Furthermore, chlorophyll and leaf area also exhibited a decreasing trend due to toxicity. Arsenic exposure also disrupted the glyoxalase system (23 and 33% decrease in glyoxalase I and glyoxalase II activities). However, the application of BC and HA recovered the reactive oxygen species-induced damages in plants, upregulated the effectiveness of the ascorbate-glutathione pool, and accelerated the activities of antioxidant defense and glyoxalase enzymes. These positive roles of BC and HA ultimately resulted in improved plant characteristics with better plant-water status and regulated proline content that conferred As stress tolerance in rice. So, it can be concluded that BC and HA effectively mitigated As-induced physiology and oxidative damage in rice plants. Therefore, BC and HA could be used as potential soil amendments in As-contaminated rice fields.


Subject(s)
Arsenic , Charcoal , Lactoylglutathione Lyase , Oryza , Antioxidants/metabolism , Oryza/metabolism , Humic Substances , Arsenic/toxicity , Oxidative Stress , Ascorbic Acid/pharmacology , Glutathione/metabolism , Lactoylglutathione Lyase/metabolism , Lactoylglutathione Lyase/pharmacology , Lipid Peroxidation , Proline/metabolism , Water , Seedlings
2.
Plants (Basel) ; 10(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34686033

ABSTRACT

The present investigation was executed with an aim to evaluate the role of exogenous selenium (Se) and boron (B) in mitigating different levels of salt stress by enhancing the reactive oxygen species (ROS) scavenging, antioxidant defense and glyoxalase systems in soybean. Plants were treated with 0, 150, 300 and 450 mM NaCl at 20 days after sowing (DAS). Foliar application of Se (50 µM Na2SeO4) and B (1 mM H3BO3) was accomplished individually and in combined (Se+B) at three-day intervals, at 16, 20, 24 and 28 DAS under non-saline and saline conditions. Salt stress adversely affected the growth parameters. In salt-treated plants, proline content and oxidative stress indicators such as malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were increased with the increment of salt concentration but the relative water content decreased. Due to salt stress catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glyoxalase I (Gly I) and glyoxalase II (Gly II) activity decreased. However, the activity of ascorbate peroxidase (APX), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST) and peroxidase (POD) increased under salt stress. On the contrary, supplementation of Se, B and Se+B enhanced the activities of APX, MDHAR, DHAR, GR, CAT, GPX, GST, POD, Gly I and Gly II which consequently diminished the H2O2 content and MDA content under salt stress, and also improved the growth parameters. The results reflected that exogenous Se, B and Se+B enhanced the enzymatic activity of the antioxidant defense system as well as the glyoxalase systems under different levels of salt stress, ultimately alleviated the salt-induced oxidative stress, among them Se+B was more effective than a single treatment.

3.
Plant Physiol Biochem ; 167: 449-458, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411784

ABSTRACT

The sulfhydryl bioregulator thiourea (TU) is effective in ameliorating the negative impact of different abiotic stresses in plants. To explore the significant performance of TU (5 mM TU, as foliar spray) in conferring mild (25% depletion of water from field capacity, FC), moderate (50% depletion from FC) and severe (75% depletion from FC) drought stress (applied at 25 days after sowing), physiological and biochemical responses of two chickpea (Cicer arietinum L.) cultivars (cv. BARI Chola-7 and BARI Chola-9) were investigated in the current study. Shoot fresh weight, dry weight, chlorophyll content and leaf relative water content reduced noticeably in mild, moderate and severe drought stresses over control. A sharp increase of H2O2 accumulation, thiobarbituric acid reactive substances and proline content were noticed at any level of drought stress which further declined in TU-treated drought-stressed plants. Thiourea-foliar application also increased ascorbate and glutathione contents and upregulated antioxidant enzyme activities, compared to drought-stressed plants alone. Thiourea-induced increased glyoxalase I and glyoxalase II activities are the indications of upregulated methylglyoxal detoxification system. Enhancement of antioxidant defense and glyoxalase system, osmoregulation and protection of photosynthetic pigments by TU improved growth, imparted oxidative stress tolerance, ameliorated ROS toxicity and improved physiology of chickpea plants under drought stress.


Subject(s)
Cicer , Droughts , Hydrogen Peroxide , Reactive Oxygen Species , Thiourea/pharmacology
4.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218014

ABSTRACT

Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.


Subject(s)
Gene Expression Regulation, Plant , Oxidative Stress , Photosynthesis , Plants/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
5.
Ecotoxicology ; 28(3): 261-276, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30761430

ABSTRACT

Nickel (Ni), an essential nutrient of plant but very toxic to plant at supra-optimal concentration that causes inhibition of seed germination emergence and growth of plants as a consequence of physiological disorders. Hence, the present study investigates the possible mechanisms of Ni tolerance in rice seedlings by exogenous application of silicon (Si). Thirteen-day-old hydroponically grown rice (Oryza sativa L. cv. BRRI dhan54) were treated with Ni (NiSO4.7H2O, 0.25 and 0.5 mM) sole or in combination with 0.50 mM Na2SiO3 for a period of 3 days to investigate the effect of Si supply for revoking the Ni stress. Nickel toxicity gave rise to reactive oxygen species (ROS) and cytotoxic methylglyoxal (MG), accordingly, initiated oxidative stress in rice leaves, and accelerated peroxidation of lipids and consequent damage to membranes. Reduced growth, biomass accumulation, chlorophyll (chl) content, and water balance under Ni-stress were also found. However, free proline (Pro) content increased in Ni-exposed plants. In contrast, the Ni-stressed seedlings fed with supplemental Si reclaimed the seedlings from chlorosis, water retrenchment, growth inhibition, and oxidative stress. Silicon up-regulated most of the antioxidant defense components as well as glyoxalase systems, which helped to improve ROS scavenging and MG detoxification. Hence, these results suggest that the exogenous Si application can improve rice seedlings' tolerance to Ni-toxicity.


Subject(s)
Antioxidants/metabolism , Nickel/pharmacology , Oryza/drug effects , Pyruvaldehyde/metabolism , Seedlings/drug effects , Silicon/pharmacology , Lipid Peroxidation/drug effects , Nickel/metabolism , Oryza/physiology , Oxidative Stress , Plant Leaves/drug effects , Plant Roots/drug effects , Reactive Oxygen Species/metabolism , Stress, Physiological
6.
Plant Physiol Biochem ; 126: 173-186, 2018 May.
Article in English | MEDLINE | ID: mdl-29525441

ABSTRACT

To investigate the physiological and biochemical mechanisms of nitric oxide (NO)-induced paraquat (PQ) tolerance in plants, we pretreated a set of 10-day-old Brassica napus seedlings with 500 µM sodium nitroprusside (SNP - a NO donor) for 24 h. Then, three doses of PQ (62.5, 125 and 250 µM) were applied separately, as well as to SNP-pretreated seedlings, and the seedlings were allowed to grow for an additional 48 h. The seedlings treated with PQ showed clear, dose-dependent signs of oxidative stress, with elevated levels of lipid peroxidation (MDA, malondialdehyde), H2O2 and O2- generation, and lipoxygenase (LOX) activity. Paraquat treatment disrupted pools of water-soluble antioxidants (ascorbate-AsA and reduced glutathione-GSH). Paraquat had different effects on the activities of antioxidant enzymes. The activities of glutathione reductase (GR) and catalase (CAT) decreased after PQ treatment in a dose-dependent manner, while the activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glyoxalase (Gly I and Gly II) decreased only with high doses of PQ (125 and 250 µM). By contrast, the activities of monodehydroascorbate reductase (MDHAR), glutathione S-transferase (GST) and glutathione peroxidase (GPX) increased after PQ treatment. A higher dose of PQ reduced chlorophyll and leaf water content but increased the methylglyoxal (MG) and proline (Pro) content. Compared to PQ alone, PQ supplemented with exogenous NO reduced LOX activity, the AsA-GSH pool, and the activities of APX, DHAR, GR, GPX, Gly I and Gly II. These effects helped to reduce oxidative stress and MG toxicity and were accompanied by reduced chlorosis and increased relative water content. Given these results, exogenous NO was found to be a key player in the mitigation of PQ toxicity in plants.


Subject(s)
Antioxidants/metabolism , Brassica napus/metabolism , Carbon-Sulfur Lyases/biosynthesis , Nitric Oxide/pharmacology , Oxidoreductases/biosynthesis , Paraquat/toxicity , Plant Proteins/biosynthesis , Seedlings/metabolism , Plant Leaves/metabolism
7.
Protoplasma ; 254(1): 445-460, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27032937

ABSTRACT

High temperature and drought stress often occur simultaneously, and due to global climate change, this kind of phenomenon occurs more frequently and severely, which exerts devastating effects on plants. Polyamines (PAs) play crucial roles in conferring abiotic stress tolerance in plants. Present study investigated how exogenous pretreatment of spermine (Spm, 0.2 mM) enhances mung bean (Vigna radiata L. cv. BARI Mung-2) seedlings tolerance to high temperature (HT, 40 °C) and drought [induced by 5 % polyethyleneglycol (PEG)] stress individually and in combination. Spm pretreatment reduced reactive oxygen species (ROS) production including H2O2 and O2•-, lipoxygenase (LOX) activity, and membrane lipid peroxidation (indicated by malondialdehyde, MDA) under HT and/or drought stress. Histochemical staining of leaves with diaminobenzidine and nitro blue tetrazolium chloride also confirmed that Spm-pretreated seedlings accumulated less H2O2 and O2•- under HT and/or drought stress. Spermine pretreatment maintained the ascorbate (AsA) and glutathione (GSH) levels high, and upregulated the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) which were vital for imparting ROS-induced oxidative stress tolerance under HT and/or drought stress. The cytotoxic compound methylglyoxal (MG) was overproduced due to HT and/or drought, but exogenous Spm pretreatment reduced MG toxicity enhancing the glyoxalase system. Spermine pretreatment modulated endogenous PA levels. Osmoregulation and restoration of plant water status were other major contributions of Spm under HT and/or drought stress. Preventing photosynthetic pigments and improving seedling growth parameters, Spm further confirmed its influential roles in HT and/or drought tolerance.


Subject(s)
Adaptation, Physiological/drug effects , Aldehyde Oxidoreductases/metabolism , Antioxidants/metabolism , Droughts , Osmoregulation/drug effects , Spermine/pharmacology , Temperature , Vigna/physiology , Catalase/metabolism , Cell Membrane/metabolism , Dehydroascorbic Acid/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Hydrogen Peroxide/metabolism , Lipoxygenase/metabolism , Malondialdehyde , Oxidative Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/enzymology , Superoxide Dismutase/metabolism , Superoxides/metabolism , Vigna/drug effects , Vigna/enzymology
8.
Front Plant Sci ; 7: 1104, 2016.
Article in English | MEDLINE | ID: mdl-27516763

ABSTRACT

The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, [Formula: see text] generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth.

9.
Environ Sci Pollut Res Int ; 23(21): 21206-21218, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27491421

ABSTRACT

The role of exogenous spermine (0.25 mM Spm, a type of polyamine (PA) in reducing Cd uptake and alleviating Cd toxicity (containing 1 and 1.5 mM CdCl2 in the growing media) effects was studied in the mung bean (Vigna radiata L. cv. BARI Mung-2) plant. Exogenously applied Spm reduced Cd content, accumulation, and translocation in different plant parts. Increasing phytochelatin content, exogenous Spm reduced Cd accumulation and translocation. Spm application reduced the Cd-induced oxidative damage which was reflected from the reduction of H2O2 content, O2•- generation rate, lipoxygenase (LOX) activity, and lipid peroxidation level and also reflected from the reduction of spots of H2O2 and O2•- from mung bean leaves (compared to control treatment). Spm pretreatment increased non-enzymatic antioxidant contents (ascorbate, AsA, and glutathione, GSH) and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) which reduced oxidative stress. The cytotoxicity of methylglyoxal (MG) is also reduced by exogenous Spm because it enhanced glyoxalase system enzymes and components. Through osmoregulation, Spm maintained a better water status of Cd-affected mung bean seedlings. Spm prevented the chl damage and increased its content. Exogenous Spm also modulated the endogenous free PAs level which might have the roles in improving physiological processes including antioxidant capacity, osmoregulation, and Cd and MG detoxification capacity. The overall Spm-induced tolerance of mung bean seedlings to Cd toxicity was reflected through improved growth of mung bean seedlings.


Subject(s)
Cadmium/pharmacology , Seedlings/drug effects , Spermine/pharmacology , Stress, Physiological/drug effects , Vigna/drug effects , Antioxidants/pharmacology , Catalase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Oxidation-Reduction , Oxidoreductases/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Pyruvaldehyde/metabolism , Seedlings/metabolism , Superoxide Dismutase/metabolism , Vigna/metabolism
10.
Ecotoxicol Environ Saf ; 126: 245-255, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26773834

ABSTRACT

Cadmium (Cd) contamination is a serious agricultural and environmental hazard. The study investigates cross-protection roles of putrescine (Put, 0.2 mM) and nitric oxide (sodium nitroprusside; SNP, 1 mM) in conferring Cd (CdCl2, 1.5 mM) tolerance in mung bean (Vigna radiata L. cv. BARI Mung-2) seedlings. Cadmium stress increased root and shoot Cd content, reduced growth, destroyed chlorophyll (chl), modulated proline (Pro) and reduced leaf relative water content (RWC), increased oxidative damage [lipid peroxidation, H2O2 content, O2(∙-) generation rate, lipoxygenase (LOX) activity], methylglyoxal (MG) toxicity. Put and/or SNP reduced Cd uptake, increasd phytochelatin (PC) content, reduced oxidative damage enhancing non-enzymatic antioxidants (AsA and GSH) and activities of enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX)]. Exogenous Put and/or SNP modulated endogenous polyamines, PAs (putrescine, Put; spermidine, Spd; spermine, Spm), and NO; improved glyoxalase system in detoxifying MG and improved physiology and growth where combined application showed better effects which designates possible crosstalk between NO and PAs to confer Cd-toxicity tolerance.


Subject(s)
Antioxidants/metabolism , Cadmium/toxicity , Environmental Pollutants/toxicity , Nitric Oxide/metabolism , Polyamines/metabolism , Pyruvaldehyde/toxicity , Vigna/drug effects , Cadmium/pharmacokinetics , Environmental Pollutants/antagonists & inhibitors , Environmental Pollutants/pharmacokinetics , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Inactivation, Metabolic , Lipid Peroxidation/drug effects , Nitroprusside/pharmacology , Oxidoreductases/metabolism , Phytochelatins , Putrescine/pharmacology , Up-Regulation , Vigna/enzymology , Vigna/metabolism
11.
Int J Mol Sci ; 16(12): 30117-32, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26694373

ABSTRACT

The role of exogenous spermidine (Spd) in alleviating low temperature (LT) stress in mung bean (Vigna radiata L. cv. BARI Mung-3) seedlings has been investigated. Low temperature stress modulated the non-enzymatic and enzymatic components of ascorbate-glutathione (AsA-GSH) cycle, increased H2O2 content and lipid peroxidation, which indicate oxidative damage of seedlings. Low temperature reduced the leaf relative water content (RWC) and destroyed leaf chlorophyll, which inhibited seedlings growth. Exogenous pretreatment of Spd in LT-affected seedlings significantly increased the contents of non-enzymatic antioxidants of AsA-GSH cycle, which include AsA and GSH. Exogenous Spd decreased dehydroascorbate (DHA), increased AsA/DHA ratio, decreased glutathione disulfide (GSSG) and increased GSH/GSSG ratio under LT stress. Activities of AsA-GSH cycle enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) increased after Spd pretreatment in LT affected seedlings. Thus, the oxidative stress was reduced. Protective effects of Spd are also reflected from reduction of methylglyoxal (MG) toxicity by improving glyoxalase cycle components, and by maintaining osmoregulation, water status and improved seedlings growth. The present study reveals the vital roles of AsA-GSH and glyoxalase cycle in alleviating LT injury.


Subject(s)
Ascorbic Acid/metabolism , Cold Temperature , Fabaceae/metabolism , Glutathione/metabolism , Lactoylglutathione Lyase/metabolism , Seedlings/metabolism , Spermidine/pharmacology , Ascorbate Peroxidases/metabolism , Biomass , Catalase/metabolism , Chlorophyll/metabolism , Dehydroascorbic Acid/metabolism , Fabaceae/drug effects , Fabaceae/enzymology , Glutathione Peroxidase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Proline/metabolism , Putrescine/pharmacology , Pyruvaldehyde/metabolism , Seedlings/drug effects , Superoxides/metabolism , Water
12.
AoB Plants ; 72015 Jul 01.
Article in English | MEDLINE | ID: mdl-26134121

ABSTRACT

Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (-0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and [Formula: see text] in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and [Formula: see text] generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought tolerance.

13.
Biomed Res Int ; 2015: 340812, 2015.
Article in English | MEDLINE | ID: mdl-26798635

ABSTRACT

The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.


Subject(s)
Antioxidants/metabolism , Arsenic/toxicity , Calcium/pharmacology , Carbon-Sulfur Lyases/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Seedlings/metabolism , Stress, Physiological/drug effects
14.
Biol Trace Elem Res ; 161(3): 297-307, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25249068

ABSTRACT

We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 µM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.


Subject(s)
Antioxidants/metabolism , Brassica napus/drug effects , Heat-Shock Response/drug effects , Pyruvaldehyde/metabolism , Seedlings/drug effects , Selenic Acid/pharmacology , Brassica napus/growth & development , Brassica napus/metabolism , Hot Temperature , Lipid Peroxidation/drug effects , Seedlings/growth & development , Seedlings/metabolism
15.
Biomed Res Int ; 2014: 589341, 2014.
Article in English | MEDLINE | ID: mdl-25110683

ABSTRACT

Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.


Subject(s)
Salinity , Salt-Tolerant Plants/physiology , Soil/chemistry , Adaptation, Physiological , Biodegradation, Environmental , Salt-Tolerant Plants/growth & development
16.
Biomed Res Int ; 2014: 757219, 2014.
Article in English | MEDLINE | ID: mdl-24991566

ABSTRACT

The present study investigates the roles of exogenous proline (Pro, 5 mM) and glycine betaine (GB, 5 mM) in improving salt stress tolerance in salt sensitive (BRRI dhan49) and salt tolerant (BRRI dhan54) rice (Oryza sativa L.) varieties. Salt stresses (150 and 300 mM NaCl for 48 h) significantly reduced leaf relative water (RWC) and chlorophyll (chl) content and increased endogenous Pro and increased lipid peroxidation and H2O2 levels. Ascorbate (AsA), glutathione (GSH) and GSH/GSSG, ascorbate peroxidae (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and glyoxalase I (Gly I) activities were reduced in sensitive variety and these were increased in tolerant variety due to salt stress. The glyoxalase II (Gly II), glutathione S-transferase (GST), and superoxide dismutase (SOD) activities were increased in both cultivars by salt stress. Exogenous Pro and GB application with salt stress improved physiological parameters and reduced oxidative damage in both cultivars where BRRI dhan54 showed better tolerance. The result suggests that exogenous application of Pro and GB increased rice seedlings' tolerance to salt-induced oxidative damage by upregulating their antioxidant defense system where these protectants rendered better performance to BRRI dhan54 and Pro can be considered as better protectant than GB.


Subject(s)
Antioxidants/metabolism , Oryza/growth & development , Oxidative Stress/drug effects , Seedlings/drug effects , Betaine/administration & dosage , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Oryza/drug effects , Proline/administration & dosage , Reactive Oxygen Species/metabolism , Salt Tolerance/physiology , Sodium Chloride/toxicity , Thiolester Hydrolases/metabolism
17.
Int J Mol Sci ; 14(5): 9643-84, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23644891

ABSTRACT

High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants.


Subject(s)
Acclimatization , Plant Physiological Phenomena , Computational Biology/methods , Genetic Engineering/methods , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hot Temperature , Oxidative Stress , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...