Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Environ Manage ; 228: 393-404, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30243075

ABSTRACT

Stormwater runoff transports contaminants, including gross pollutants (GPs) accumulated on surfaces to nearby receiving water bodies. These may clog storm drainage systems, seal side entry pits and increase dissolved pollutants in receiving water bodies. Best management practices (BMPs) such as oil and grit separators, grassed swales, vegetated filter strips, retention ponds, and catch basin inserts (CBIs) are implemented to reduce stormwater pollutants in urban runoff. However, the information on physicochemical characteristics of the pollutants are still few in literature but important to improve the design of BMPs, considering qualitative aspects, and their operation. CBIs are devices used to remove GPs at source without requiring any extra land use because they are typically mounted within a catch basin (e.g. side entry pit) or existing drain. In this study, improvement of stormwater quality was investigated at two different sites (Subiaco, a residential area and Hillarys Boat Harbour, a commercial-marine-recreational area; Western Australia) where a new CBI made of non-woven polypropylene geotextile was installed in side entry pits to capture GPs at source. Influent and effluent water from the CBIs was collected and analyzed for BOD, COD, TSS and PO4-P with maximum improvements in water quality of 90%, 88%, 88% and 26% respectively. The heavy metals in influent and effluent water were found very low and below the guideline values. Analysis of particle size distribution, specific surface area of solids, SEM images and heavy metal content (Cu, Fe, Ni, Pb, Zn, Cd) in solids showed that the residential area contained more finer particles than the commercial area but that solids in the commercial area contained greater concentrations of heavy metals than those from the residential area. The specific surface area was found to be higher in the residential area and particles were thought to be largely sourced from traffic. However, these characteristics may be monitored for longer term for more CBIs installed in different locations.


Subject(s)
Water/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Ponds , Rain , Water Movements , Water Pollutants, Chemical/analysis , Water Quality , Western Australia
2.
Sci Total Environ ; 618: 1054-1063, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29108695

ABSTRACT

Suspended solids in urban runoff have multiple adverse environmental impacts and create a wide range of water quality problems in receiving water bodies. Geotextile filtration systems inserted within catch basins have the potential to mitigate these effects, through flow attenuation and pollutant removal. This study modelled a catch basin in a column and assessed the hydraulic and solids removal characteristics of a new type of non-woven geotextile (NWG1) in the capture of solids from stormwater runoff. The new geotextile was compared with two others readily available on the market (NWG2, NWG3). Synthetic stormwater containing TSS (200mg/L) was used with two particle size distributions of 0-180µm (P1; D50:106µm) and 0-300µm (P2; D50:150µm). The results revealed that the desired stormwater TSS concentration (<30mg/L; ANZECC, 2000) could be achieved with a short ripening process (e.g., 1-2kg/m2 of suspended solids loading) for trials using the larger particle size distribution (P2). In addition, 36% more suspended solids were captured in trials using the soil with the larger range of particle sizes (P2) than for the soil with smaller particle sizes (P1). Geotextile fibre pattern appeared to have a significant influence on the TSS removal capacity. The NWG1 has higher permittivity than NWG3 but similar to NWG2. NWG1 could capture overall more TSS (which also resulted in earlier clogging) than NWG2 and NWG3 because of the special fibre structure of NWG1. The experimental data shows that these geotextiles may start to clog when the hydraulic conductivity reaches below 1.36×10-5m/s. The overall hydraulic performances of geotextiles showed that the NWG1 has better potential for use in CBIs because of its higher strength and multiple reuse capability.

3.
Sci Total Environ ; 586: 76-86, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28199877

ABSTRACT

The accumulation of wash-off solid waste, termed gross pollutants (GPs), in drainage systems has become a major constraint for best management practices (BMPs) of stormwater. GPs should be captured at source before the material clogs the drainage network, seals the infiltration capacity of side entry pits or affects the aquatic life in receiving waters. BMPs intended to reduce stormwater pollutants include oil and grit separators, grassed swales, vegetated filter strips, retention ponds, and catch basin inserts (CBIs) are used to remove GP at the source and have no extra land use requirement because they are typically mounted within a catch basin (e.g. side entry pits; grate or gully pits). In this study, a new type of CBI, recently developed by Urban Stormwater Technologies (UST) was studied for its performance at a site in Gosnells, Western Australia. This new type of CBI can capture pollutants down to particle sizes of 150µm while retaining its shape and pollutant capturing capacity for at least 1year. Data on GP and associated water samples were collected during monthly servicing of CBIs for one year. The main component of GPs was found to be vegetation (93%): its accumulation showed a strong relationship (r2=0.9) with rainfall especially during the wet season. The average accumulation of total GP load for each CBI was 384kg/ha/yr (dry mass) with the GP moisture content ranging from 24 to 52.5%. Analysis of grain sizes of GPs captured in each CBI showed similar distributions in the different CBIs. The loading rate coefficient (K) calculated from runoff and GP load showed higher K-values for CBI located near trees. The UST developed CBI in this study showed higher potential to capture GPs down to 150µm in diameter than similar CBI devices described in previous studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...