Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(33): 18996-19005, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-35516900

ABSTRACT

Here, we developed an efficient infrared (IR) detector comprising reduced graphene oxide (RGO) and carbon nanoparticles (CNPs) for detecting human body IR radiation under ambient conditions. The RGO/CNP nanocomposite thin-film based photodetectors were assembled via a simple solution-phase cost-effective route with different concentrations of RGO solution while keeping CNP concentration constant. Three RGO/CNP nanocomposite photodetector devices were fabricated with three different concentrations of RGO (keeping CNP concentration constant) and their photoresponse properties have been studied. The devices showed a sharp response to IR radiation emitted by the human body at room temperature having a wavelength of nearly 780 nm. I-V characteristics, radiation current responsivity, and time response curves as well as their external quantum efficiencies have been studied and explained. We measured two important parameters, namely, IR responsivity (R λ) and external quantum efficiency (EQE) of RGO/CNP based IR detector devices. Our annotations show that R λ and EQE increase with increasing concentration of GO in RGO/CNP nanocomposites as expected. This simple and inexpensive approach based on the integration of RGO and CNP could also be useful for the design of other potential optoelectronic devices such as photosensors for use in auto-doors to permit the entrance of human bodies only and in spaceships or robots to identify the existence of humans on Mars and the Moon.

2.
Chemistry ; 18(51): 16419-25, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23129515

ABSTRACT

The synthesis and structures of the N-[(2-hydroxy-3-methyl-5-dodecylphenyl)methyl]-N-(carboxymethyl)glycine disodium salt (HL) ligand and its neutral mononuclear complex [Fe(III) (L)(EtOH)(2)] (1) are reported. Structural and electronic properties of 1 were investigated by using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy (CITS) techniques. These studies reveal that molecules of 1 form well-ordered self-assemblies when deposited on a highly oriented pyrolytic graphite (HOPG) surface. At low concentrations, single or double chains (i.e., nanowires) of the complex were observed, whereas at high concentration the complex forms crystals and densely packed one-dimensional structures. In STM topographies, the dimensions of assemblies of 1 found on the surface are consistent with dimensions obtained from X-ray crystallography, which indicates the strong similarities between the crystal form and surface assembled states. Double chains are attributed to hydrogen-bonding interactions and the molecules align preferentially along graphite defects. In the CITS image of complex 1 a strong tunneling current contrast at the positions of the metal ions was observed. These data were interpreted and reveal that the bonds coordinating the metal ions are weaker than those of the surrounding ligands; therefore the energy levels next to the Fermi energy of the molecule should be dominated by metal-ion orbitals.

4.
Dalton Trans ; (23): 2835-51, 2006 Jun 21.
Article in English | MEDLINE | ID: mdl-16751892

ABSTRACT

Flat, quantum dot like arrays of closely spaced, electron rich metal centres are seen as attractive subunits for device capability at the molecular level. Mn(II)9 grids, formed by self-assembly processes using 'tritopic' pyridine-2,6-dihydrazone ligands, provide easy and pre-programmable routes to such systems, and have been shown to exhibit a number of potentially useful physical properties, which could be utilized to generate bi-stable molecular based states. Their ability to form surface monolayers, which can be mapped by STM techniques, bodes well for their possible integration into nanometer scale electronic components of the future. This report highlights some new Mn(II)9 grids, with functionalized ligand sites, that may provide suitable anchor points to surfaces and also be potential donor sites capable of further grid elaboration. Structures, magnetic properties, electrochemical properties, surface studies on HOPG (highly ordered pyrolytic graphite), including the imaging of individual metal ion sites in the grid using CITS (current imaging tunneling spectroscopy) are discussed, in addition to an analysis of the photophysics of a stable mixed oxidation state [Mn(III)4Mn(II)5] grid. The grid physical properties as a whole are assessed in the light of reasonable approaches to the use of such molecules as nanometer scale devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...