Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 3(12): 8427-8437, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35019614

ABSTRACT

Materials for preventing harmful bacterial contamination attract widespread interest in areas that include healthcare, home/personal care products, and crop protection. One approach to achieving this functionality is through the sustained release of antibacterial compounds. To this end, we show how putty-like complex coacervates, formed through the association of poly(allylamine hydrochloride) (PAH) with pentavalent tripolyphosphate (TPP) ions, can provide a sustained antibacterial effect by slowly releasing bactericides. Using triclosan (TC) as a model bactericide, we demonstrate that, through their dispersion in the parent PAH solution with nonionic surfactants, hydrophobic biocides can be efficiently and predictably encapsulated within PAH/TPP coacervates. Once encapsulated, the bactericide can be released over multiple months, and the release rates can be readily tuned by varying the bactericide and surfactant compositions used during encapsulation. Through this release, the PAH/TPP coacervates provide sustained bactericidal activity against model Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli) grown under a nutrient-rich condition over at least two weeks. Thereafter, though some partial activity persists after one month, the release slows down and the bactericide-eluting coacervates lose their efficacy. Overall, we show that bactericide release from easy-to-prepare complex coacervates can provide a pathway to sustained disinfection.

SELECTION OF CITATIONS
SEARCH DETAIL
...