Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 43(24): e2200028, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35146833

ABSTRACT

Hydrolytically degradable poly(ß-thioether ester ketal) thermosets are synthesized via radical-mediated thiol-ene photopolymerization using three novel dialkene acyclic ketal monomers and a mercaptopropionate based tetrafunctional thiol. For all thermoset compositions investigated, degradation behavior is highly tunable based on the structure of the incorporated ketal and pH. Complete degradation of the thermosets is observed upon exposure to acidic and neutral pH, and under high humidity conditions. Polymer networks composed of cross-link junctions based on acyclic dimethyl ketals degrade the quickest, whereas networks containing acyclic cyclohexyl ketals undergo hydrolytic degradation on a longer timescale. Thermomechanical analysis reveals low glass transition temperatures and moduli typical of thioether-based thermosets.


Subject(s)
Polymers , Sulfides , Polymers/chemistry , Hydrolysis , Acids/chemistry , Sulfhydryl Compounds
2.
ACS Omega ; 3(8): 10278-10285, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459158

ABSTRACT

We report a simple, rapid, and scalable strategy to fabricate surfaces exhibiting in-air superoleophobic/superhydrophilic wetting via sequential spray deposition and photopolymerization of nanoparticle-laden thiol-acrylate resins comprising both hydrophilic and oleophobic chemical constituents. The combination of spray deposition with nanoparticles provides hierarchical surface morphologies with both micro- and nanoscale roughness. Mapping the wetting behavior as a function of resin composition using high- and low-surface-tension liquid probes enabled facile identification of coatings that exhibit a range of wetting behavior, including superhydrophilic/superoleophilic, superhydrophobic/superoleophobic, and in-air superhydrophilic/superoleophobic wetting. In-air superhydrophilic/superoleophobic wetting was realized by a dynamic rearrangement of the interface to expose a greater fraction of hydrophilic moieties in response to contact with water. We show that these in-air superoleophobic/superhydrophilic coatings deposited onto porous supports enable separation of model oil-water emulsions with separation efficiencies up to 99.9% with 699 L·m-2 h-1 permeate flux when the superhydrophilic/superoleophobic coatings are paired with 0.45 µm nylon membrane supports.

SELECTION OF CITATIONS
SEARCH DETAIL
...