Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 134(12)2024 May 09.
Article in English | MEDLINE | ID: mdl-38950310

ABSTRACT

In utero gene editing (IUGE) is a potential treatment for inherited diseases that cause pathology before or soon after birth. Preexisting immunity to adeno-associated virus (AAV) vectors and Cas9 endonuclease may limit postnatal gene editing. The tolerogenic fetal immune system minimizes a fetal immune barrier to IUGE. However, the ability of maternal immunity to limit fetal gene editing remains a question. We investigated whether preexisting maternal immunity to AAV or Cas9 impairs IUGE. Using a combination of fluorescent reporter mice and a murine model of a metabolic liver disease, we demonstrated that maternal anti-AAV IgG antibodies were efficiently transferred from dam to fetus and impaired IUGE in a maternal titer-dependent fashion. By contrast, maternal cellular immunity was inefficiently transferred to the fetus, and neither maternal cellular nor humoral immunity to Cas9 impaired IUGE. Using human umbilical cord and maternal blood samples collected from mid- to late-gestation pregnancies, we demonstrated that maternal-fetal transmission of anti-AAV IgG was inefficient in midgestation compared with term, suggesting that the maternal immune barrier to clinical IUGE would be less relevant at midgestation. These findings support immunologic advantages for IUGE and inform maternal preprocedural testing protocols and exclusion criteria for future clinical trials.


Subject(s)
Dependovirus , Gene Editing , Animals , Female , Dependovirus/genetics , Dependovirus/immunology , Mice , Pregnancy , Humans , Immunoglobulin G/immunology , Immunoglobulin G/genetics , Immunoglobulin G/blood , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/immunology , Genetic Vectors/immunology , Maternal-Fetal Exchange/immunology , Maternal-Fetal Exchange/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , CRISPR-Cas Systems , Fetus/immunology , Immunity, Maternally-Acquired/immunology
2.
Nat Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982196

ABSTRACT

Lipid nanoparticles (LNPs) are widely used for mRNA delivery, with cationic lipids greatly affecting biodistribution, cellular uptake, endosomal escape and transfection efficiency. However, the laborious synthesis of cationic lipids limits the discovery of efficacious candidates and slows down scale-up manufacturing. Here we develop a one-pot, tandem multi-component reaction based on the rationally designed amine-thiol-acrylate conjugation, which enables fast (1 h) and facile room-temperature synthesis of amidine-incorporated degradable (AID) lipids. Structure-activity relationship analysis of a combinatorial library of 100 chemically diverse AID-lipids leads to the identification of a tail-like amine-ring-alkyl aniline that generally affords efficacious lipids. Experimental and theoretical studies show that the embedded bulky benzene ring can enhance endosomal escape and mRNA delivery by enabling the lipid to adopt a more conical shape. The lead AID-lipid can not only mediate local delivery of mRNA vaccines and systemic delivery of mRNA therapeutics, but can also alter the tropism of liver-tropic LNPs to selectively deliver gene editors to the lung and mRNA vaccines to the spleen.

3.
Mol Ther Nucleic Acids ; 35(2): 102172, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38978694

ABSTRACT

Clinical application of CRISPR-Cas9 technology for large deletions of somatic mutations is inefficient, and methods to improve utility suffer from our inability to rapidly assess mono- vs. biallelic deletions. Here we establish a model system for investigating allelic heterogeneity at the single-cell level and identify indel scarring from non-simultaneous nuclease activity at gRNA cut sites as a major barrier to CRISPR-del efficacy both in vitro and in vivo. We show that non-simultaneous nuclease activity is partially prevented via restriction of CRISPR-Cas9 expression via inducible adeno-associated viruses (AAVs) or lipid nanoparticles (LNPs). Inducible AAV-based expression of CRISPR-del machinery significantly improved mono- and biallelic deletion frequency in vivo, supporting the use of the Xon cassette over traditional constitutively expressing AAV approaches. These data depicting improvements to deletions and insight into allelic heterogeneity after CRISPR-del will inform therapeutic approaches for phenotypes that require either large mono- or biallelic deletions, such as autosomal recessive diseases or where mutant allele-specific gRNAs are not readily available, or in situations where the targeted sequence for excision is located multiple times in a genome.

4.
Res Sq ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39041038

ABSTRACT

Resurgence in malaria has been noted in 2022 with 249 million clinical cases resulting in 608,000 deaths, mostly in children under five. Two vaccines, RTS, S, and more recently R21, targeting the circumsporozoite protein (CSP) are recommended by the WHO but are not yet widely available. Strong humoral responses to neutralize sporozoites before they can infect the hepatocytes are important for vaccine-mediated protection. Suboptimal protection conferred by these first-generation vaccines highlight the need for approaches to improve vaccine-induced immune responses. With the recent success of mRNA-LNP vaccines against COVID-19, there is growing interest in leveraging this approach to enhance malaria vaccines. Here, we present the development of a novel chemokine fusion mRNA vaccine aimed at boosting immune responses to PfCSP by targeting the immunogen to immature dendritic cells (iDC). Vaccination of mice with mRNA encoding full-length CSP fused to macrophage inflammatory protein 3 alpha (MIP3α) encapsulated within lipid nanoparticles (LNP) elicited robust CD4 + T cell responses and enhanced antibody titers against NANP repeat epitopes compared to a conventional CSP mRNA-LNP vaccine. Importantly, the CSP-MIP3α fusion vaccine provided significantly greater protection against liver infection upon challenge with P. berghei PfCSP transgenic sporozoites. This enhanced protection was associated with multifunctional CD4 + T cells levels and anti-NANP repeat titers. This study highlights the potential to augment immune responses to PfCSP through iDC targeting and bolster protection against malaria liver infection.

5.
Nat Rev Drug Discov ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951662

ABSTRACT

In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.

6.
Front Immunol ; 15: 1350560, 2024.
Article in English | MEDLINE | ID: mdl-38863702

ABSTRACT

Background: Despite decades of effort, Plasmodium falciparum malaria remains a leading killer of children. The absence of a highly effective vaccine and the emergence of parasites resistant to both diagnosis as well as treatment hamper effective public health interventions. Methods and results: To discover new vaccine candidates, we used our whole proteome differential screening method and identified PfGBP130 as a parasite protein uniquely recognized by antibodies from children who had developed resistance to P. falciparum infection but not from those who remained susceptible. We formulated PfGBP130 as lipid encapsulated mRNA, DNA plasmid, and recombinant protein-based immunogens and evaluated the efficacy of murine polyclonal anti-PfGBP130 antisera to inhibit parasite growth in vitro. Immunization of mice with PfGBP130-A (aa 111-374), the region identified in our differential screen, formulated as a DNA plasmid or lipid encapsulated mRNA, but not as a recombinant protein, induced antibodies that inhibited RBC invasion in vitro. mRNA encoding the full ectodomain of PfGBP130 (aa 89-824) also generated parasite growth-inhibitory antibodies. Conclusion: We are currently advancing PfGBP130-A formulated as a lipid-encapsulated mRNA for efficacy evaluation in non-human primates.


Subject(s)
Antibodies, Protozoan , Erythrocytes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Animals , Plasmodium falciparum/immunology , Antibodies, Protozoan/immunology , Mice , Erythrocytes/parasitology , Erythrocytes/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Humans , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antigens, Protozoan/immunology , Immunization , Female
7.
NPJ Vaccines ; 9(1): 110, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890316

ABSTRACT

Maternal antibodies (matAbs) protect against a myriad of pathogens early in life; however, these antibodies can also inhibit de novo immune responses against some vaccine platforms. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) matAbs are efficiently transferred during pregnancy and protect infants against subsequent SARS-CoV-2 infections. It is unknown if matAbs inhibit immune responses elicited by different types of SARS-CoV-2 vaccines. Here, we established a mouse model to determine if SARS-CoV-2 spike-specific matAbs inhibit immune responses elicited by recombinant protein and nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccines. We found that SARS-CoV-2 mRNA-LNP vaccines elicited robust de novo antibody responses in mouse pups in the presence of matAbs. Recombinant protein vaccines were also able to circumvent the inhibitory effects of matAbs when adjuvants were co-administered. While additional studies need to be completed in humans, our studies raise the possibility that mRNA-LNP-based and adjuvanted protein-based SARS-CoV-2 vaccines have the potential to be effective when delivered very early in life.

8.
bioRxiv ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38712058

ABSTRACT

Phenylketonuria (PKU), hereditary tyrosinemia type 1 (HT1), and mucopolysaccharidosis type 1 (MPSI) are autosomal recessive disorders linked to the phenylalanine hydroxylase (PAH) gene, fumarylacetoacetate hydrolase (FAH) gene, and alpha-L-iduronidase (IDUA) gene, respectively. Potential therapeutic strategies to ameliorate disease include corrective editing of pathogenic variants in the PAH and IDUA genes and, as a variant-agnostic approach, inactivation of the 4-hydroxyphenylpyruvate dioxygenase (HPD) gene, a modifier of HT1, via adenine base editing. Here we evaluated the off-target editing profiles of therapeutic lead guide RNAs (gRNAs) that, when combined with adenine base editors correct the recurrent PAH P281L variant, PAH R408W variant, or IDUA W402X variant or disrupt the HPD gene in human hepatocytes. To mitigate off-target mutagenesis, we systematically screened hybrid gRNAs with DNA nucleotide substitutions. Comprehensive and variant-aware specificity profiling of these hybrid gRNAs reveal dramatically reduced off-target editing and reduced bystander editing. Lastly, in a humanized PAH P281L mouse model, we showed that when formulated in lipid nanoparticles (LNPs) with adenine base editor mRNA, selected hybrid gRNAs revert the PKU phenotype, substantially enhance on-target editing, and reduce bystander editing in vivo. These studies highlight the utility of hybrid gRNAs to improve the safety and efficacy of base-editing therapies.

9.
Vaccines (Basel) ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793794

ABSTRACT

The COVID-19 pandemic has raised the standard regarding the current vaccine development pace, as several messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccines have proved their ability to induce strong immunogenicity and protective efficacy. We developed 1-methylpseudouridine-containing mRNA-LNP vaccines, expressing either the more conserved SARS-CoV-2 nucleoprotein (mRNA-N) or spike protein (mRNA-S), both based on the prototypic viral sequences. When combining both mRNA-S and mRNA-N together (mRNA-S+N), the vaccine showed high immunogenicity and broad protection against different SARS-CoV-2 variants, including wildtype, Delta, BA.1, BA.5, and BQ.1. To better understand the mechanisms behind this broad protection obtained by mRNA-S+N, we analyzed innate and adaptive immune parameters following vaccination in mice. Compared to either mRNA-S or mRNA-N alone, mice vaccinated with mRNA-S+N exhibited an increase in the innate immune response, as depicted by the higher cytokine (IL-6 and chemokine (MCP-1) levels. In addition, lymph node immunophenotyping showed the maturation and activation of dendritic cells and natural killer cells, respectively. To understand the adaptive immune response, RNA-Seq analyses of the lung and spleen samples of the vaccinated mice were performed in parallel and revealed a stronger immune gene-expression profile in the lung than that in the spleen. Compared to mRNA-S alone, mRNA-S+N vaccination elicited higher levels of expression for genes involved in multiple immune pathways, including T cells, cytokine signaling, antigen presentation, B cells, and innate immunity. Together, our studies provide immunological insights into the mechanisms of broad protection conferred by dual mRNA vaccination against SARS-CoV-2 variants.

10.
Nat Commun ; 15(1): 4350, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782954

ABSTRACT

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Subject(s)
Antibodies, Viral , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Nanoparticles , Orthomyxoviridae Infections , mRNA Vaccines , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Female , Mice , Nanoparticles/chemistry , Male , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , mRNA Vaccines/immunology , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza in Birds/virology , Humans , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Birds/virology , Lipids/chemistry , Liposomes
11.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38454606

ABSTRACT

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Ischemic Stroke , Liposomes , Nanoparticles , Vascular Cell Adhesion Molecule-1 , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Animals , Mice , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Nanoparticles/chemistry , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Lipids/chemistry , Drug Delivery Systems/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Humans
12.
Adv Mater ; 36(26): e2313226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38419362

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.


Subject(s)
Antigen-Presenting Cells , Immunotherapy, Adoptive , Nanoparticles , RNA, Messenger , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Nanoparticles/chemistry , Animals , Mice , Antigen-Presenting Cells/immunology , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Cell Line, Tumor , Lipids/chemistry , Transfection/methods , Liposomes
13.
Nat Commun ; 15(1): 1884, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424061

ABSTRACT

Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms.


Subject(s)
DNA , Nanoparticles , Female , Animals , Mice , RNA, Messenger/genetics , Lung , Lipids
14.
Nat Commun ; 15(1): 1762, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409275

ABSTRACT

The ionizable lipidoid is a key component of lipid nanoparticles (LNPs). Degradable lipidoids containing extended alkyl branches have received tremendous attention, yet their optimization and investigation are underappreciated. Here, we devise an in situ construction method for the combinatorial synthesis of degradable branched (DB) lipidoids. We find that appending branch tails to inefficacious lipidoids via degradable linkers boosts mRNA delivery efficiency up to three orders of magnitude. Combinatorial screening and systematic investigation of two libraries of DB-lipidoids reveal important structural criteria that govern their in vivo potency. The lead DB-LNP demonstrates robust delivery of mRNA therapeutics and gene editors into the liver. In a diet-induced obese mouse model, we show that repeated administration of DB-LNP encapsulating mRNA encoding human fibroblast growth factor 21 alleviates obesity and fatty liver. Together, we offer a construction strategy for high-throughput and cost-efficient synthesis of DB-lipidoids. This study provides insights into branched lipidoids for efficient mRNA delivery.


Subject(s)
Nanoparticles , Animals , Mice , Humans , RNA, Messenger/genetics , Nanoparticles/chemistry , RNA, Small Interfering
15.
Sci Transl Med ; 16(732): eadg6229, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295183

ABSTRACT

Disruption of pulmonary vascular homeostasis is a central feature of viral pneumonia, wherein endothelial cell (EC) death and subsequent angiogenic responses are critical determinants of the outcome of severe lung injury. A more granular understanding of the fundamental mechanisms driving reconstitution of lung endothelium is necessary to facilitate therapeutic vascular repair. Here, we demonstrated that TGF-ß signaling through TGF-ßR2 (transforming growth factor-ß receptor 2) is activated in pulmonary ECs upon influenza infection, and mice deficient in endothelial Tgfbr2 exhibited prolonged injury and diminished vascular repair. Loss of endothelial Tgfbr2 prevented autocrine Vegfa (vascular endothelial growth factor α) expression, reduced endothelial proliferation, and impaired renewal of aerocytes thought to be critical for alveolar gas exchange. Angiogenic responses through TGF-ßR2 were attributable to leucine-rich α-2-glycoprotein 1, a proangiogenic factor that counterbalances canonical angiostatic TGF-ß signaling. Further, we developed a lipid nanoparticle that targets the pulmonary endothelium, Lung-LNP (LuLNP). Delivery of Vegfa mRNA, a critical TGF-ßR2 downstream effector, by LuLNPs improved the impaired regeneration phenotype of EC Tgfbr2 deficiency during influenza injury. These studies defined a role for TGF-ßR2 in lung endothelial repair and demonstrated efficacy of an efficient and safe endothelial-targeted LNP capable of delivering therapeutic mRNA cargo for vascular repair in influenza infection.


Subject(s)
Influenza, Human , Humans , Mice , Animals , Receptor, Transforming Growth Factor-beta Type II , Vascular Endothelial Growth Factor A , Lung/metabolism , Transforming Growth Factor beta/metabolism , RNA, Messenger
16.
Bioact Mater ; 34: 125-137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38223537

ABSTRACT

Ionizable lipid nanoparticles (LNPs) have gained attention as mRNA delivery platforms for vaccination against COVID-19 and for protein replacement therapies. LNPs enhance mRNA stability, circulation time, cellular uptake, and preferential delivery to specific tissues compared to mRNA with no carrier platform. However, LNPs are only in the beginning stages of development for safe and effective mRNA delivery to the placenta to treat placental dysfunction. Here, we develop LNPs that enable high levels of mRNA delivery to trophoblasts in vitro and to the placenta in vivo with no toxicity. We conducted a Design of Experiments to explore how LNP composition, including the type and molar ratio of each lipid component, drives trophoblast and placental delivery. Our data revealed that utilizing C12-200 as the ionizable lipid and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as the phospholipid in the LNP design yields high transfection efficiency in vitro. Analysis of lipid molar composition as a design parameter in LNPs displayed a strong correlation between apparent pKa and poly (ethylene) glycol (PEG) content, as a reduction in PEG molar amount increases apparent pKa. Further, we present one LNP platform that exhibits the highest delivery of placental growth factor mRNA to the placenta in pregnant mice, resulting in synthesis and secretion of a potentially therapeutic protein. Lastly, our high-performing LNPs have no toxicity to both the pregnant mice and fetuses. Our results demonstrate the feasibility of LNPs as a platform for mRNA delivery to the placenta, and our top LNP formulations may provide a therapeutic platform to treat diseases that originate from placental dysfunction during pregnancy.

17.
Sci Rep ; 14(1): 2373, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287068

ABSTRACT

ChulaCov19 mRNA vaccine demonstrated promising phase 1 results. Healthy adults aged 18-59 years were double-blind randomised 4:1 to receive two intramuscular doses of ChulaCov19 50 µg or placebo. Primary endpoints were safety and microneutralization antibody against-wild-type (Micro-VNT50) at day 50. One hundred fifty adults with median (IQR) age 37 (30-46) years were randomised. ChulaCov19 was well tolerated, and most adverse events were mild to moderate and temporary. Geometric mean titres (GMT) of neutralizing titre against wild-type for ChulaCov19 on day 50 were 1367 IU/mL. T-cell IFN-γ-ELISpot showed the highest responses at one week (Day29) after dose 2 then gradually declined. ChulaCov19 50 µg is well tolerated and elicited high neutralizing antibodies and strong T-cell responses in healthy adults.Trial registration number: ClinicalTrials.gov Identifier NCT04566276, 28/09/2020.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Middle Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine , mRNA Vaccines , Adolescent , Young Adult
18.
Small ; 20(11): e2304378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072809

ABSTRACT

With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long-term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab-LNPs) to target pan-T cell markers. The in vivo evaluation of these Ab-LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab-LNPs for the delivery of CAR mRNA, antibody and dose-dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan-T cell markers, and develops Ab-LNPs capable of generating functional CAR T cells in vivo.


Subject(s)
Nanoparticles , Receptors, Chimeric Antigen , Receptors, Chimeric Antigen/genetics , Liposomes , Transfection , Antibodies , Cell Engineering , RNA, Small Interfering
19.
HGG Adv ; 5(1): 100253, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37922902

ABSTRACT

The c.1222C>T (p.Arg408Trp) phenylalanine hydroxylase (PAH) variant is the most frequent cause of phenylketonuria (PKU), an autosomal recessive disorder characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Here we devised a therapeutic base editing strategy to correct the variant, using prime-edited hepatocyte cell lines engineered with the c.1222C>T variant to screen a variety of adenine base editors and guide RNAs in vitro, followed by assessment in c.1222C>T humanized mice in vivo. We found that upon delivery of a selected adenine base editor mRNA/guide RNA combination into mice via lipid nanoparticles (LNPs), there was sufficient PAH editing in the liver to fully normalize blood Phe levels within 48 h. This work establishes the viability of a base editing strategy to correct the most common pathogenic variant found in individuals with the most common inborn error of metabolism, albeit with potential limitations compared with other genome editing approaches.


Subject(s)
Liposomes , Nanoparticles , Phenylalanine Hydroxylase , Phenylketonurias , Mice , Animals , Gene Editing , RNA, Messenger/genetics , RNA, Guide, CRISPR-Cas Systems , Phenylketonurias/genetics , Phenylalanine Hydroxylase/genetics , Adenine
20.
J Immunol ; 211(11): 1680-1692, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37850965

ABSTRACT

Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. Although the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle immunization, the microbiome suppresses Ig and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA lipid nanoparticle vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for continued therapeutic development and deployment of these vaccines.


Subject(s)
Microbiota , Vaccines, DNA , Mice , Animals , Nucleic Acid-Based Vaccines , CD8-Positive T-Lymphocytes , DNA , RNA, Messenger , Immunization, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...