Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 381, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724902

ABSTRACT

The wild relatives of cultivated apples would be an ideal source of diversity for breeding new varieties, which could potentially grow in diverse habitats shaped by climate change. However, there is still a lack of knowledge about the potential distribution of these species. The aim of the presented work was the understand the impacts of climate change on the potential distribution and habitat fragmentation of Caucasian crab apple (Malus orientalis Uglitzk.) and the designation of areas of high interest according to climatic conditions. We used the MaxEnt models and Morphological-Spatial Analysis (MSPA) to evaluate the potential distribution, suitability changes, habitat fragmentation, and connectivity throughout the species range in Turkey, Armenia, Georgia, Russia, and Iran. The results revealed that the potentially suitable range of M. orientalis encompasses 858,877 km², 635,279 km² and 456,795 km² under the present, RCP4.5 and RCP8.5 scenario, respectively. The range fragmentation analysis demonstrated a notable shift in the edge/core ratio, which increased from 50.95% in the current scenario to even 67.70% in the future. The northern part of the range (Armenia, northern Georgia, southern Russia), as well as the central and western parts of Hyrcania will be a core of the species range with suitable habitats and a high connectivity between M. orientalis populations and could work as major refugia for the studied species. However, in the Zagros and central Turkey, the potential range will shrink due to the lack of suitable climatic conditions, and the edge/core ratio will grow. In the southern part of the range, a decline of M. orientalis habitats is expected due to changing climatic conditions. The future outlook suggests that the Hyrcanian forest and the Caucasus region could serve as important refuges for M. orientalis. This study helps to understand spatial changes in species' range in response to climate change and can help develop conservation strategies. This is all the more important given the species' potential use in future breeding programs aimed at enriching the gene pool of cultivated apple varieties.


Subject(s)
Climate Change , Ecosystem , Malus , Malus/genetics , Turkey , Georgia (Republic) , Russia , Iran , Plant Dispersal , Armenia
2.
Plant Physiol Biochem ; 211: 108711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733941

ABSTRACT

Trace heavy metals (HMs) such as copper (Cu) and nickel (Ni) are toxic to plants, especially tomato at high levels. In this study, biochar (BC) was treated with amino acids (AA) to enhance amino functional groups, which effectively alleviated the adverse effects of heavy metals (HMs) on tomato growth. Hence, this study aimed to evaluate the effect of glycine and alanine modified BC (GBC/ABC) on various tomato growth parameters, its physiology, fruit yield and Cu/Ni uptake under Cu and Ni stresses. In a pot experiment, there was 21 treatments with three replications having two rates of simple BC and glycine/alanine enriched BC (0.5% and 1% (w/w). Cu and Ni stresses were added at 150 mg kg-1 respectively. Plants were harvested after 120 days of sowing and subjected to various analysis. Under Cu and Ni stresses, tomato roots accumulated more Cu and Ni than shoots and fruits, while GBC and ABC application significantly enhanced the root and shoot dry weight irrelevant to the stress conditions. Both rates of GBC decreased the malondialdehyde and hydrogen peroxide levels in plants. The addition of 0.5% GBC with Cu enhanced the tomato fruit dry weight by 1.3 folds in comparison to the control treatment; while tomato fruit juice content also increased (50%) in the presence of 0.5% GBC with Ni as compared to control. In summary, these results demonstrated that lower rate of GBC∼0.5% proved to be the best in mitigating the Cu and Ni stress on tomato plant growth by enhancing the fruit production.


Subject(s)
Amino Acids , Charcoal , Copper , Fruit , Nickel , Solanum lycopersicum , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Nickel/pharmacology , Fruit/drug effects , Fruit/growth & development , Fruit/metabolism , Charcoal/pharmacology , Amino Acids/metabolism , Soil Pollutants , Stress, Physiological/drug effects , Soil/chemistry
4.
Heliyon ; 10(10): e30936, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38799739

ABSTRACT

The country bean (Lablab purpureus), is a significant contributor of dietary protein and other essential components in human nutrition. Because of its elevated moisture content, it is susceptible to rapid decay, leading to losses after harvesting. The utilization of solar drying has attracted significant attention as a tactic to minimize nutrient depletion in dried goods and enhance their longevity. This study employed four solar drying techniques, namely long chimney, short chimney, box solar drying and open sun drying, along with pretreatments such as potassium metabisulfite, potassium-sodium tartrate, citric acid and ascorbic acid. The objective was to determine an effective solar drying method, combined with pretreatment, that can maintain the color and nutritional qualities of dried country bean seeds. The treatment combinations were organized in a factorial randomized complete block design (RCBD) with three replications. The data were subjected to a two-way analysis of variance (ANOVA) and a Duncan Multiple Range Test (DMRT) was conducted at a significance level of 5 % (p < 0.05). Results revealed that box solar dryer having the highest drying efficiency, retained the highest ß-carotene (82.94 %), vitamin C (90.15 %), protein (96.48 %), fat (11.63 %), and ash (90.50 %) with maximum DPPH radical scavenging activity (lowest IC50 209.49 µg/ml) compared to other driers. Besides, country bean seeds have noteworthy proximate compositions, antioxidant activity, and bioactive components treated with 1 % potassium metabisulfite. Furthermore, the country bean seeds dehydrated in box solar dryer after 1 % potassium metabisulfite treatment received the highest acceptance score on the five-point Hedonic scale (4.83-4.89 out of 5.00) and color appearance and the similar trend was further supported by principal component analysis. Thus, it can be inferred that using a box solar dryer with a 1 % potassium metabisulfite pretreatment is a feasible method for preserving the color and nutritional value of country bean seeds and reducing postharvest losses.

6.
BMC Plant Biol ; 24(1): 234, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561674

ABSTRACT

Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits (structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Himalayas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.


Subject(s)
Parthenium hysterophorus , Plants , Chlorophyll A , Himalayas , Water , Plant Leaves
7.
Plants (Basel) ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38592859

ABSTRACT

Wild fruits and vegetables (WFVs) have been vital to local communities for centuries and make an important contribution to daily life and income. However, traditional knowledge of the use of wild fruits is at risk of being lost due to inadequate documentation. This study aimed to secure this knowledge through intermittent field visits and a semi-structured questionnaire. Using various ethnobotanical data analysis tools and SPSS (IBM 25), this study identified 65 WFV species (52 genera and 29 families). These species, mostly consumed as vegetables (49%) or fruits (43%), were predominantly herbaceous (48%) in wild and semi-wild habitats (67%). 20 WFVs were known to local communities (highest RFC), Phoenix sylvestris stood out as the most utilized species (highest UV). Surprisingly, only 23% of the WFVs were sold at markets. The survey identified 21 unique WFVs that are rarely documented for human consumption in Pakistan (e.g., Ehretia obtusifolia, Euploca strigosa, Brassica juncea, Cleome brachycarpa, Gymnosporia royleana, Cucumis maderaspatanus, Croton bonplandianus, Euphorbia prostrata, Vachellia nilotica, Pongamia pinnata, Grewia asiatica, Malvastrum coromandelianum, Morus serrata, Argemone mexicana, Bambusa vulgaris, Echinochloa colonum, Solanum virginianum, Physalis angulata, Withania somnifera, Zygophyllum creticum, and Peganum harmala), as well as 14 novel uses and five novel edible parts. Despite their ecological importance, the use of WFVs has declined because local people are unaware of their cultural and economic value. Preservation of traditional knowledge through education on conservation and utilization could boost economies and livelihoods in this and similar areas worldwide.

8.
Plant Physiol Biochem ; 207: 108412, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38359557

ABSTRACT

Arsenic (As) poses a significant environmental threat as a metalloid toxin, adversely affecting the health of both plants and animals. Strigolactones (SL) and nitric oxide (NO) are known to play crucial roles in plant physiology. Therefore, the present experiment was designed to investigate the potential cumulative role of SL (GR24-0.20 µM) and NO (100 µM) in mitigating the adverse effect of AsV (53 µM) by modulating physiological mechanisms in two genotypes of tomato (Riogrand and Super Strain 8). A sample randomized design with four replicates was used to arrange the experimental pots in the growth chamber. 45-d old both tomato cultivars under AsV toxicity exhibited reduced morphological attributes (root and shoot length, root and shoot fresh weight, and root and shoot dry weight) and physiological and biochemical characteristics [chlorophyll (Chl) a and b content, activity of δ-aminolevulinic acid dehydratase activity (an enzyme responsible for Chl biosynthesis), and carbonic anhydrase activity (an enzyme responsible for photosynthesis), and enhanced Chl degradation, overproduction of reactive oxygen species (ROS) and lipid peroxidation due to enhanced malondialdehyde (MDA) content. However, the combined application of SL and NO was more effective in enhancing the tolerance of both varieties to AsV toxicity compared to individual application. The combined application of SL and NO improved growth parameters, biosynthesis of Chls, NO and proline. However, the combined application significantly suppressed cellular damage by inhibiting MDA and overproduction of ROS in leaves and roots, as confirmed by the fluorescent microscopy study and markedly upregulated the antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate dismutase and glutathione reductase) activity. This study provides clear evidence that the combined application of SL and NO supplementation significantly improves the resilience of tomato seedlings against AsV toxicity. The synergistic effect of SL and NO was confirmed by the application of cPTIO (an NO scavenger) with SL and NO. However, further molecular studies could be imperative to conclusively validate the simultaneous role of SL and NO in enhancing plant tolerance to abiotic stress.


Subject(s)
Arsenic , Heterocyclic Compounds, 3-Ring , Lactones , Resilience, Psychological , Solanum lycopersicum , Antioxidants/metabolism , Seedlings/metabolism , Nitric Oxide/metabolism , Arsenic/pharmacology , Reactive Oxygen Species/metabolism , Oxidative Stress , Hydrogen Peroxide/metabolism
9.
PeerJ ; 11: e15821, 2023.
Article in English | MEDLINE | ID: mdl-37780391

ABSTRACT

Background: Chemical mutagenesis has been successfully used for increasing genetic diversity in crop plants. More than 800 novel mutant types of rice (Oryza sativa L.) have been developed through the successful application of numerous mutagenic agents. Among a wide variety of chemical mutagens, ethyl-methane-sulfonate (EMS) is the alkylating agent that is most commonly employed in crop plants because it frequently induces nucleotide substitutions as detected in numerous genomes. Methods: In this study, seeds of the widely consumed Basmati rice variety (Super Basmati, Oryza sativa L.) were treated with EMS at concentrations of 0.25%, 0.50%, 0.75%, 1.0%, and 1.25% to broaden its narrow genetic base. Results: Sensitivity to a chemical mutagen such as ethyl methanesulfonate (EMS) was determined in the M1 generation. Results in M1 generation revealed that as the levels of applied EMS increased, there was a significant reduction in the germination percent, root length, shoot length, plant height, productive tillers, panicle length, sterile spikelet, total spikelet, and fertility percent as compared to the control under field conditions. All the aforementioned parameters decreased but there was an increase in EMS mutagens in an approximately linear fashion. Furthermore, there was no germination at 1.25% of EMS treatment for seed germination. A 50% germination was recorded between 0.50% and 0.75% EMS treatments. After germination, the subsequent parameters, viz. root length and shoot length had LD50 between 05.0% and 0.75% EMS dose levels. Significant variation was noticed in the photosynthetic and water related attributes of fragrant rice. The linear increase in the enzymatic attributes was noticed by the EMS mediated treatments. After the establishment of the plants in the M1 generation in the field, it was observed that LD50 for fertility percentage was at EMS 1.0% level, for the rice variety. Conclusion: Hence, it is concluded that for creating genetic variability in the rice variety (Super Basmati), EMS doses from 0.5% to 0.75% are the most efficient, and effective.


Subject(s)
Oryza , Ethyl Methanesulfonate/pharmacology , Oryza/genetics , Mutation , Mutagens/toxicity , Mutagenesis
10.
Plants (Basel) ; 12(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37687282

ABSTRACT

The cytochrome P450 (CYP450) gene family plays a critical role in plant growth and developmental processes, nutrition, and detoxification of xenobiotics in plants. In the present research, a comprehensive set of 105 OsCYP71 family genes was pinpointed within the genome of indica rice. These genes were categorized into twelve distinct subfamilies, where members within the same subgroup exhibited comparable gene structures and conserved motifs. In addition, 105 OsCYP71 genes were distributed across 11 chromosomes, and 36 pairs of OsCYP71 involved in gene duplication events. Within the promoter region of OsCYP71, there exists an extensive array of cis-elements that are associated with light responsiveness, hormonal regulation, and stress-related signaling. Further, transcriptome profiling revealed that a majority of the genes exhibited responsiveness to hormones and were activated across diverse tissues and developmental stages in rice. The OsCYP71P6 gene is involved in insect resistance, senescence, and yield-related traits in rice. Hence, understanding the association between OsCYP71P6 genetic variants and yield-related traits in rice varieties could provide novel insights for rice improvement. Through the utilization of linear regression models, a total of eight promoters were identified, and a specific gene variant (Ser33Leu) within OsCYP71P6 was found to be linked to spikelet fertility. Additionally, different alleles of the OsCYP71P6 gene identified through in/dels polymorphism in 131 rice varieties were validated for their allelic effects on yield-related traits. Furthermore, the single-plant yield, spikelet number, panicle length, panicle weight, and unfilled grain per panicle for the OsCYP71P6-1 promoter insertion variant were found to contribute 20.19%, 13.65%, 5.637%, 8.79%, and 36.86% more than the deletion variant, respectively. These findings establish a robust groundwork for delving deeper into the functions of OsCYP71-family genes across a range of biological processes. Moreover, these findings provide evidence that allelic variation in the promoter and amino acid substitution of Ser33Leu in the OsCYP71P6 gene could potentially impact traits related to rice yield. Therefore, the identified promoter variants in the OsCYP71P6 gene could be harnessed to amplify rice yields.

11.
Front Plant Sci ; 14: 1238704, 2023.
Article in English | MEDLINE | ID: mdl-37745988

ABSTRACT

Aegilops tauschii (Coss.) is a highly deleterious, rapidly proliferating weed within the wheat, and its DD genome composition exhibits adaptability toward diverse abiotic stresses and demonstrates heightened efficacy in nutrient utilization. Current study investigated different variegated impacts of distinct nitrogen concentrations with varied plant densities, scrutinizing the behavior of Ae. tauschii under various salinity and drought stress levels through multiple physiological, biochemical, and molecular pathways. Different physiological parameters attaining high growth with different plant density and different nitrogen availability levels increased Ae. tauschii dominancy. Conversely, under the duress of salinity and drought, Ae. tauschii showcased an enhanced performance through a comprehensive array of physiological and biochemical parameters, including catalase, peroxidase, malondialdehyde, and proline content. Notably, salinity-associated traits such as sodium, potassium, and the sodium-potassium ratio exhibited significant variations and demonstrated remarkable tolerance capabilities. In the domain of molecular pathways, the HKT and DREB genes have displayed a remarkable upregulation, showcasing a comparatively elevated expression profile in reaction to different levels of salinity and drought-induced stress. Without a doubt, this information will make a substantial contribution to the understanding of the fundamental behavioral tendencies and the efficiency of nutrient utilization in Ae. tauschii. Moreover, it will offer innovative viewpoints for integrated management, thereby enabling the enhancement of strategies for adept control and alleviation.

12.
PeerJ ; 11: e15743, 2023.
Article in English | MEDLINE | ID: mdl-37601248

ABSTRACT

Background: The green approaches for the synthesis of nanoparticles are gaining significant importance because of their high productivity, purity, low cost, biocompatibility, and environmental friendliness. Methods: The aim of the current study is the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using seed extracts of Silybum marianum, which acts as a reducing and stabilizing agent. central composite design (CCD) of response surface methodology (RSM) optimized synthesis parameters (temperature, pH, reaction time, plant extract, and salt concentration) for controlled size, stability, and maximum yields of ZnO-NPs. Green synthesized ZnO-NPs was characterized using UV-visible spectroscopy and Zetasizer analyses. Results: The Zetasizer confirmed that green synthesized ZnO-NPs were 51.80 nm in size and monodispersed in nature. The UV-visible results revealed a large band gap energy in the visible region at 360.5 nm wavelength. The bioactivities of green synthesized ZnO-NPs, including antifungal, antibacterial, and pesticidal, were also evaluated. Data analysis confirmed that these activities were concentration dependent. Bio-synthesized ZnO-NPs showed higher mortality towards Tribolium castaneum of about 78 ± 0.57% after 72 h observation as compared to Sitophilus oryzae, which only displayed 74 ± 0.57% at the same concentration and time intervals. Plant-mediated ZnO-NPs also showed high potential against pathogenic gram-positive bacteria (Clavibacter michiganensis), gram-negative bacteria (Pseudomonas syringae), and two fungal strains such as Fusarium oxysporum, and Aspergillums niger with inhibition zones of 18 ± 0.4, 25 ± 0.4, 21 ± 0.57, and 19 ± 0.4 mm, respectively. Conclusion: The results of this study showed that Silybum marianum-based ZnO-NPs are cost-effective and efficient against crop pests.


Subject(s)
Asteraceae , Nanoparticles , Zinc Oxide , Silybum marianum , Zinc Oxide/pharmacology , Anti-Bacterial Agents
13.
Plants (Basel) ; 12(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570977

ABSTRACT

Cicer arietinum L. (Bengal gram, chickpea) is one of the major pulse crops and an important part of traditional diets in Asia, Africa, and South America. The present study was conducted to determine the changes in total isoflavones during sprouting (0, 3, and 7 days) along with the effect of two precursor supplementations, p-coumaric acid (p-CA) and L-phenylalanine (Phe), in C. arietinum. It was observed that increasing sprouting time up to the seventh day resulted in ≈1282 mg 100 g-1 isoflavones, which is approximately eight times higher than chickpea seeds. The supplementation of Phe did not affect the total length of sprouts, whereas the supplementation of p-CA resulted in stunted sprouts. On the third day of supplementation with p-CA (250 mg L-1), the increase in the total phenolic content (TPC) (80%), daidzein (152%), and genistin (158%) contents were observed, and further extending the supplementation reduced the growth of sprouts. On the seventh day of supplementation with Phe (500 mg L-1), the increase in TPC by 43% and genistin content by 74% was observed compared with non-treated sprouts; however, the total isoflavones content was found to be 1212 mg 100 g-1. The increased TPC was positively correlated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (r = 0.787) and ferric-reducing antioxidant potential (FRAP) (r = 0.676) activity. This study suggests that chickpea sprouts enriched in TPC and antioxidants can be produced by the appropriate quantity of precursor supplementation on a particular day. The results indicated major changes in the phytochemical content, especially daidzein and genistin. It was also concluded that the consumption of 100 g of seventh-day sprouts provided eight times higher amounts of isoflavones in comparison to chickpea seeds.

14.
Sci Rep ; 13(1): 12924, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558811

ABSTRACT

Peppermint has gained a promising status due to the presence of a high proportion of bioactive compounds, especially menthol. Due to its pharmacological efficacy, the demand for its plant-based bioactive compounds necessitates its cultivation worldwide. Brassinosteroids are polyhydroxylated sterol derivatives that regulate diverse processes and control many agronomic traits during plant growth and development. A factorial randomised pot experiment was performed in the net house to investigate the effect of 24-Epibrassinolide (EBL) on the growth, physiology, essential oil content, stomatal behaviour and trichome development of the three cultivars of peppermint. Four levels of foliage-applied EBL, viz. 0, 10-5, 10-6 and 10-7 M were applied to the three cultivars of peppermint (Kukrail, Pranjal and Tushar). Among the different treatments of EBL, the application of 10-6 M increased shoot length by 38.84, 37.59 and 36.91%, root length by 36.73, 29.44 and 33.47%, chlorophyll content by 24.20, 22.48 and 23.32%, PN by 32.88, 32.61 and 33.61%, EO content by 32.72, 30.00 and 28.84%, EO yield per plant by 66.66, 77.77 and 73.33% and menthol yield per plant by 127.27, 110 and 118.18% in Kukrail, Tushar and Pranjal respectively, compared with their respective control plants. Further, the 10-6 M EBL exhibited improved trichome size and density, cellular viability and menthol content of the oil analysed from scanning electron microscopy, confocal laser scanning microscopy and GC-MS respectively as compared to the control. In conclusion, out of different levels of EBL, two sprays of 10-6 M EBL proved effective in enhancing the morphophysiological features and productivity of mint plants, particularly for cultivar Kukrail.


Subject(s)
Mentha piperita , Oils, Volatile , Menthol/pharmacology , Oils, Volatile/pharmacology , Trichomes , Brassinosteroids/pharmacology , Plants , Chemical Phenomena
15.
Plants (Basel) ; 12(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299147

ABSTRACT

Growth habits are among the essential adaptive traits acted upon by evolution during plant speciation. They have brought remarkable changes in the morphology and physiology of plants. Inflorescence architecture varies greatly between wild relatives and cultivars of pigeon pea. The present study isolated the CcTFL1 (Terminal Flowering Locus 1) locus using six varieties showing determinate (DT) and indeterminate (IDT) growth habits. Multiple alignments of CcTFL1 sequences revealed the presence of InDel, which describes a 10 bp deletion in DT varieties. At the same time, IDT varieties showed no deletion. InDel altered the translation start point in DT varieties, resulting in the shortening of exon 1. This InDel was validated in ten varieties of cultivated species and three wild relatives differing in growth habits. The predicted protein structure showed the absence of 27 amino acids in DT varieties, which was reflected in mutant CcTFL1 by the absence of two α-helices, a connecting loop, and shortened ß-sheet. By subsequent motif analysis, it was found that the wild-type protein had a phosphorylation site for protein kinase C, but the mutant protein did not. In silico analysis revealed that the InDel-driven deletion of amino acids spans, containing a phosphorylation site for kinase protein, may have resulted in the non-functionality of the CcTFL1 protein, rendering the determinate growth habit. This characterization of the CcTFL1 locus could be used to modulate growth habits through genome editing.

16.
Front Plant Sci ; 14: 1152485, 2023.
Article in English | MEDLINE | ID: mdl-37123820

ABSTRACT

Introduction: Increased soil salinity in the recent years has adversely affected the productivity of mango globally. Extending the cultivation of mango in salt affected regions warrants the use of salinity tolerant/resistant rootstocks. However, the lack of sufficient genomic and transcriptomic information impedes comprehensive research at the molecular level. Method: We employed RNA sequencing-based transcriptome analysis to gain insight into molecular response to salt stress by using two polyembryonic mango genotypes with contrasting response to salt stress viz., salt tolerant Turpentine and salt susceptible Mylepelian. Results: RNA sequencing by Novaseq6000 resulted in a total of 2795088, 17535948, 7813704 and 5544894 clean reads in Mylepelian treated (MT), Mylepelian control (MC), Turpentine treated (TT) and Turpentine control (TC) respectively. In total, 7169 unigenes annotated against all the five public databases, including NR, NT, PFAM, KOG, Swissport, KEGG and GO. Further, maximum number of differentially expressed genes were found between MT and MC (2106) followed by MT vs TT (1158) and TT and TC (587). The differentially expressed genes under different treatment levels included transcription factors (bZIP, NAC, bHLH), genes involved in Calcium-dependent protein kinases (CDPKs), ABA biosynthesis, Photosynthesis etc. Expression of few of these genes was experimentally validated through quantitative real-time PCR (qRT-PCR) and contrasting expression pattern of Auxin Response Factor 2 (ARF2), Late Embryogenesis Abundant (LEA) and CDPK genes were observed between Turpentine and Mylepelian. Discussion: The results of this study will be useful in understanding the molecular mechanism underlying salt tolerance in mango which can serve as valuable baseline information to generate new targets in mango breeding for salt tolerance.

17.
Plant Sci ; 334: 111749, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37244501

ABSTRACT

Proline-rich extensin-like receptor kinases (PERKs) play a crucial role in a wide range of biological processes in plants. In model plants like Arabidopsis, the PERK gene family has been well investigated. Conversely, no information available on the PERK gene family and their biological functions largely remained unknown in rice. This study analyzed the basic physicochemical properties, phylogeny, gene structure, cis-acting elements, Gene ontology (GO) annotation and protein-protein interaction of OsPERK gene family members using various bioinformatics tools based on the whole-genome data of O. sativa. Thus, in this work, 8 PERK genes in rice were identified, and their roles in plant development, growth, and response to various stresses were studied. A phylogenetic study revealed that OsPERKs are grouped into seven classes. Chromosomal mapping also displayed that 8 PERK genes were unevenly distributed on 12 chromosomes. Further, the prediction of subcellular localization indicated that OsPERKs were mainly located at the endomembrane system. Gene structure analysis of OsPERKs has shown a distinctive evolutionary path. In addition, synteny analysis exhibited the 40 orthologous gene pairs in Arabidopsis thaliana, Triticum aestivum, Hordeum vulgare and Medicago truncatula. Furthermore, Ka to Ks proportion shows that most OsPERK genes experienced resilient purifying selection during evolutionary processes. The OsPERK promoters contained several cis-acting regulatory, which are crucial for plant development processes, phytohormone signaling, stress, and defense response. Moreover, the expression pattern of OsPERK family members showed differential expression patterns in different tissues and various stress conditions. Taken together, these results provide clear messages for a better understanding the roles of OsPERK genes in various development stages, tissues, and multifactorial stress as well as enriched the related research of OsPERK family members in rice.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Genome, Plant/genetics , Phylogeny , Stress, Physiological/genetics , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Multigene Family , Gene Expression Profiling/methods
18.
Front Plant Sci ; 14: 1150225, 2023.
Article in English | MEDLINE | ID: mdl-37035065

ABSTRACT

Intercropping has been acknowledged as a sustainable practice for enhancing crop productivity and water use efficiency under rainfed conditions. However, the contribution of different planting rows towards crop physiology and yield is elusive. In addition, the influence of nitrogen (N) fertilization on the physiology, yield, and soil water storage of rainfed intercropping systems is poorly understood; therefore, the objective of this experiment was to study the contribution of different crop rows on the physiological, yield, and related traits of wheat/maize relay-strip intercropping (RSI) with and without N application. The treatments comprised of two factors viz. intercropping with three levels (sole wheat, sole maize, and RSI) and two N application rates, with and without N application. Results showed that RSI significantly improved the land use efficiency and grain yield of both crops under rainfed conditions. Intercropping with N application (+N treatment) resulted in the highest wheat grain yield with 70.37 and 52.78% increase as compared with monoculture and without N application in 2019 and 2020, respectively, where border rows contributed the maximum followed by second rows. The increase in grain yield was attributed to higher values of the number of ears per square meter (10-25.33% more in comparison to sole crop without N application) during both study years. The sole wheat crop without any N application recorded the least values for all yield-related parameters. Despite the absence of significant differences, the relative decrease in intercropped maize under both N treatments was over 9% compared to the sole maize crop, which was mainly ascribed to the border rows (24.65% decrease compared to the sole crop) that recorded 12 and 13% decrease in kernel number and thousand-grain weight, respectively than the sole crop. This might be attributed to the reduced photosynthesis and chlorophyll pigmentation in RSI maize crop during the blended growth period. In a nutshell, it can be concluded that wheat/maize RSI significantly improved the land use efficiency and the total yield compared to the sole crops' yield in arid areas in which yield advantages were mainly ascribed to the improvement in wheat yield.

19.
Front Plant Sci ; 14: 1153500, 2023.
Article in English | MEDLINE | ID: mdl-37082340

ABSTRACT

The present experiment was conducted to assess the impact of fixed and variable doses (using a normalized difference vegetation index-sensor) of nitrogen (N) on wheat yields, nutrient uptake, nitrogen use efficiency, and soil nitrogen balance through the optimization of nitrogen dose. There were 10 treatments based on fixed and variable doses with different splits, and each treatment was replicated three times under a randomized complete block design. The treatments comprised fixed doses of 120 and 150 kg N ha-1 with different splits; variable doses based on sensor readings after application of 60, 90, and 120 kg N ha-1; 225 kg N ha-1 as a nitrogen-rich control; and no application of nitrogen as the absolute control. It was revealed that the application of a basal dose of 60 kg N ha-1 and another 60 kg N ha-1 at the crown root initiation stage followed by a sensor-guided N application significantly improved wheat grain yields and grain nitrogen uptake. However, straw nitrogen uptake was highest in N-rich plots where 225 kg N ha-1was applied. It was found that any curtailment in these doses at basal and crown root initiation stages followed by nitrogen application using a normalized difference vegetation index sensor later could not bring about higher crop yields. On average, wheat crops responded to 152-155 kg N ha-1 in both years of the study. Partial factor productivity along with agronomic and economic nitrogen use efficiency showed a declining trend with an increased rate of N application. Apparent N recovery values were comparable between normalized difference vegetation index sensor-based N application treatments and treatments receiving lesser N doses. Soil N status decreased in all the treatments except the nitrogen-rich strip, where there was a marginal increase in soil N status after the wheat crop harvest in the rotation. Partial nitrogen balance was negative for all the treatments except the control. From these 2-year field trials, it can be concluded that applying a normalized difference vegetation index sensor could be an essential tool for the rational management of fertilizer nitrogen in wheat grown in eastern sub-Himalayan plains.

20.
Ecotoxicol Environ Saf ; 256: 114866, 2023 May.
Article in English | MEDLINE | ID: mdl-37023649

ABSTRACT

The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.


Subject(s)
Arsenic , Oryza , Phosphorus , Soil Pollutants , Humans , Arsenic/toxicity , Chromatography, Liquid , Oryza/metabolism , Oryza/microbiology , Phosphorus/analysis , Plant Roots/metabolism , Secondary Metabolism , Tandem Mass Spectrometry , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...