Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Lab Chip ; 24(6): 1676-1684, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38305095

ABSTRACT

Ultrasonic atomization of liquids into micrometer-diameter droplets is crucial across multiple fields, ranging from drug delivery, to spectrometry and printing. Controlling the size and uniformity of the generated droplets on-demand is crucial in all these applications. However, existing systems lack the required precision to tune the droplet properties, and the underlying droplet formation mechanism under high-frequency ultrasonic actuation remains poorly understood due to experimental constraints. Here, we present an atomization platform, which overcomes these current limitations. Our device utilizes oscillating high aspect ratio micro-channels to extract liquids from various inlets (ranging from sessile droplets to large beakers), bound them in a precisely defined narrow region, and, controllably atomize them on-demand. The droplet size can be precisely dialled from 3.6 µm to 6.8 µm by simply tuning the actuation parameters. Since the approach does not need nozzles, meshes or impacting jets, stresses exerted on the liquid samples are reduced, hence it is gentler on delicate samples. The precision offered by the technique allows us for the first time to experimentally visualise the oscillating fluid interface at the onset of atomization at MHz frequencies, and demonstrate its applications for targeted respiratory drug delivery.

2.
J 3D Print Med ; 7(1): 3DP2, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38051985

ABSTRACT

Background: Face shields protect healthcare workers (HCWs) from fluid and large droplet contamination. Their effect on smaller aerosolized particles is unknown. Materials & methods: An ultrasonic atomizer was used to simulate particle sizes equivalent to human breathing and forceful cough. Particles were measured at positions correlating to anesthetic personnel in relation to a patient inside an operating theatre environment. The effect of the application of face shields on HCW exposure was measured. Results & Conclusion: Significant reductions in particle concentrations were measured after the application of vented and enclosed face shields. Face shields appear to reduce the concentration of aerosolized particles that HCWs are exposed to, thereby potentially conferring further protection against exposure to aerosolized particles in an operating theatre environment.


Face shields protect health workers from splash contamination. We do not know if they protect against smaller invisible aerosol drops that can carry diseases like coronavirus 2019/COVID-19. The authors tested whether face shields can stop floating droplets using different types of face shields. This included one that was designed and made by a 3D printer, and traditional face shields. The shields were tested in a hospital operating room. A machine was designed that made invisible saltwater droplets. A monitor was used to measure the droplets present at a doctor's or nurse's mouth and then if this changed when a face shield was used. The face shield might be helpful in stopping health workers from catching diseases by stopping the flow of aerosol drops.

3.
Nanoscale ; 15(34): 14266, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37584670

ABSTRACT

Correction for 'In situ synthesis of silver nanowire gel and its super-elastic composite foams' by Shu Huang et al., Nanoscale, 2020, 12, 19861-19869, https://doi.org/10.1039/D0NR03958F.

4.
J Nanobiotechnology ; 21(1): 273, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592297

ABSTRACT

BACKGROUND: Nanoinjection-the process of intracellular delivery using vertically configured nanostructures-is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell's intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. RESULTS: Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells' viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. CONCLUSIONS: We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing.


Subject(s)
Antibodies , DNA Damage , Animals , Mice , Cell Membrane , Cell Survival , Gene Silencing
5.
Adv Mater ; 35(44): e2304122, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37434421

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising cell-based immunotherapy approach for treating blood disorders and cancers, but genetically engineering CAR-T cells is challenging due to primary T cells' sensitivity to conventional gene delivery approaches. The current viral-based method can typically involve significant operating costs and biosafety hurdles, while bulk electroporation (BEP) can lead to poor cell viability and functionality. Here, a non-viral electroactive nanoinjection (ENI) platform is developed to efficiently negotiate the plasma membrane of primary human T cells via vertically configured electroactive nanotubes, enabling efficient delivery (68.7%) and expression (43.3%) of CAR genes in the T cells, with minimal cellular perturbation (>90% cell viability). Compared to conventional BEP, the ENI platform achieves an almost threefold higher CAR transfection efficiency, indicated by the significantly higher reporter GFP expression (43.3% compared to 16.3%). By co-culturing with target lymphoma Raji cells, the ENI-transfected CAR-T cells' ability to effectively suppress lymphoma cell growth (86.9% cytotoxicity) is proved. Taken together, the results demonstrate the platform's remarkable capacity to generate functional and effective anti-lymphoma CAR-T cells. Given the growing potential of cell-based immunotherapies, such a platform holds great promise for ex vivo cell engineering, especially in CAR-T cell therapy.


Subject(s)
Lymphoma , Receptors, Antigen, T-Cell , Humans , T-Lymphocytes , Transfection , Electroporation , Lymphoma/metabolism
6.
ACS Appl Bio Mater ; 6(3): 1092-1104, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36780700

ABSTRACT

The rapid increase in multidrug resistant biofilm infections is a major concern for global health. A highly effective therapy is required for the treatment of biofilm related infections. In this study, curcumin loaded alginate microfibers were generated by using the microfluidic technique. In this strategy, alginate microfibers are used as a carrier for the encapsulation of curcumin and then are irradiated with blue light to assess the efficacy of a combined therapy (blue light + curcumin) against drug resistant Staphylococcus aureus (S. aureus). The advantage of utilizing photodynamic therapy (PDT) is the usage of a non-antibiotic mode to inactivate bacterial cells. In the presence of blue light, the curcumin loaded alginate microfibers have shown good eradication activity against biofilms formed by multidrug resistant S. aureus. We achieved different diameters of curcumin loaded alginate microfibers through manipulation of flow rates. The curcumin loaded microfibers were characterized for their size, morphology, and curcumin encapsulation. Further, the efficacy of these microfibers in the presence of blue light has been evaluated against biofilm forming S. aureus (NCIM 5718) through optical and electron microscopy. This study employs microfluidic techniques to obtain an efficacious and cost-effective microfibrous scaffold for controlled release of curcumin to treat biofilms in the presence of blue light.


Subject(s)
Curcumin , Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Staphylococcal Infections , Humans , Staphylococcus aureus , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Curcumin/pharmacology , Microfluidics , Photochemotherapy/methods , Biofilms , Staphylococcal Infections/drug therapy
7.
Lab Chip ; 22(9): 1829-1840, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35380576

ABSTRACT

Malaria is a life-threatening disease caused by a parasite, which can be transmitted to humans through bites of infected female Anopheles mosquitoes. This disease plagues a significant population of the world, necessitating the need for better diagnostic platforms to enhance the detection sensitivity, whilst reducing processing times, sample volumes and cost. A critical step in achieving improved detection is the effective lysis of blood samples. Here, we propose the use of an acoustically actuated microfluidic mixer for enhanced blood cell lysis. Guided by numerical simulations, we experimentally demonstrate that the device is capable of lysing a 20× dilution of isolated red blood cells (RBCs) with an efficiency of ∼95% within 350 ms (0.1 mL). Further, experimental results show that the device can effectively lyse whole blood irrespective of its dilution factor. Compared to the conventional method of using water, this platform is capable of releasing a larger quantity of haemoglobin into plasma, increasing the efficiency without the need for lysis reagents. The lysis efficiency was validated with malaria infected whole blood samples, resulting in an improved sensitivity as compared to the unlysed infected samples. Partial least squares-regression (PLS-R) analysis exhibits cross-validated R2 values of 0.959 and 0.98 from unlysed and device lysed spectral datasets, respectively. Critically, as expected, the root mean square error of cross validation (RMSECV) value was significantly reduced in the acoustically lysed datasets (RMSECV of 0.97), indicating the improved quantification of parasitic infections compared to unlysed datasets (RMSECV of 1.48). High lysis efficiency and ultrafast processing of very small sample volumes makes the combined acoustofluidic/spectroscopic approach extremely attractive for point-of-care blood diagnosis, especially for detection of neonatal and congenital malaria in babies, for whom a heel prick is often the only option for blood collection.


Subject(s)
Malaria , Erythrocytes , Female , Humans , Infant, Newborn , Malaria/diagnosis , Microfluidics , Point-of-Care Systems
8.
Biosensors (Basel) ; 12(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35200379

ABSTRACT

The identification of biomarkers from blood plasma is at the heart of many diagnostic tests. These tests often need to be conducted frequently and quickly, but the logistics of sample collection and processing not only delays the test result, but also puts a strain on the healthcare system due to the sheer volume of tests that need to be performed. The advent of microfluidics has made the processing of samples quick and reliable, with little or no skill required on the user's part. However, while several microfluidic devices have been demonstrated for plasma separation, none of them have validated the chemical integrity of the sample post-process. Here, we present Haemoprocessor: a portable, robust, open-fluidic system that utilizes Travelling Surface Acoustic Waves (TSAW) with the expression of overtones to separate plasma from 20× diluted human blood within a span of 2 min to achieve 98% RBC removal. The plasma and red blood cell separation quality/integrity was validated through Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy and multivariate analyses to ascertain device performance and reproducibility when compared to centrifugation (the prevailing gold-standard for plasma separation). Principal Component Analysis (PCA) showed a remarkable separation of 92.21% between RBCs and plasma components obtained through both centrifugation and Haemoprocessor methods. Moreover, a close association between plasma isolates acquired by both approaches in PCA validated the potential of the proposed system as an eminent cell enrichment and plasma separation platform. Thus, compared to contemporary acoustic devices, this system combines the ease of operation, low sample requirement of an open system, the versatility of a SAW device using harmonics, and portability.


Subject(s)
Microfluidics , Plasma , Humans , Microfluidics/methods , Point-of-Care Testing , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared
9.
Ultrason Sonochem ; 83: 105936, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35144192

ABSTRACT

This paper presents an acoustically actuated microfluidic mixer that uses an array of hydrodynamically coupled resonators to rapidly homogenise liquid solutions and synthesise nanoparticles. The system relies on 8 identical oscillating cantilevers that are equally spaced on the perimeter of a circular well, through which the liquid solutions are introduced. When an oscillatory electrical signal is applied to a piezoelectric transducer attached to the device, the cantilevers start resonating. Due to the close proximity between the cantilevers, their circular arrangement and the liquid medium in which they are immersed, the vibration of each cantilever affects the response of its neighbours. The streaming fields and shearing rates resulting from the oscillating structures were characterised. It was shown that the system can be used to effectively mix fluids at flow rates up to 1400 µl.min-1 in time scales as low as 2 ms. The rapid mixing time is especially advantageous for nanoparticle synthesis, which is demonstrated by synthesising Poly lactide-co-glycolic acid (PLGA) nanoparticles with 52.2 nm size and PDI of 0.44.


Subject(s)
Microfluidics , Nanoparticles , Microfluidics/instrumentation , Nanoparticles/chemistry , Transducers
10.
Lab Chip ; 22(6): 1214-1230, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35170605

ABSTRACT

This paper presents an X-ray compatible microfluidic platform for in situ characterization of chemical reactions at synchrotron light sources. We demonstrate easy to implement techniques to probe reacting solutions as they first come into contact, and study the very first milliseconds of their reaction in real-time through X-ray absorption spectroscopy (XAS). The devices use polydimethylsiloxane (PDMS) microfluidic channels sandwiched between ultrathin, X-ray transparent silicon nitride observation windows and rigid substrates. The new approach has three key advantages: i) owing to the assembly techniques employed, the devices are suitable for both high energy and tender (1-5 keV) X-rays; ii) they can operate in a vacuum environment (a must for low energy X-rays) and iii) they are robust enough to survive a full 8 hour shift of continuous scanning with a micro-focused beam, providing higher spatial and thus greater time resolution than previous studies. The combination of these opens new opportunities for in situ studies. This has so far not been possible with Kapton or glass-based flow cells due to increased attenuation of the low energy beam passing through these materials. The devices provide a well-defined mixing region to collect spatial maps of spatially stable concentration profiles, and XAS point spectra to elucidate the chemical structure and characterize the chemical reactions. The versatility of the approach is demonstrated through in situ XAS measurements on the mixing of two reactants in a microfluidic laminar flow device, as well as a segmented droplet based system for time resolved analysis.


Subject(s)
Microfluidics , Synchrotrons , Lab-On-A-Chip Devices , X-Rays
11.
Sci Rep ; 11(1): 15176, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312441

ABSTRACT

There is currently a high level of demand for rapid COVID-19 tests, that can detect the onset of the disease at point of care settings. We have developed an ultra-portable, self-contained, point-of-care nucleic acid amplification test for diagnosis of active COVID-19 infection, based on the principle of loop mediated isothermal amplification (LAMP). The LAMP assay is 100% sensitive and specific to detect a minimum of 300 RNA copies/reaction of SARS-CoV-2. All of the required sample transportation, lysing and amplification steps are performed in a standalone disposable cartridge, which is controlled by a battery operated, pocket size (6x9x4cm3) unit. The test is easy to operate and does not require skilled personnel. The total time from sample to answer is approximately 35 min; a colorimetric readout indicates positive or negative results. This portable diagnostic platform has significant potential for rapid and effective testing in community settings. This will accelerate clinical decision making, in terms of effective triage and timely therapeutic and infection control interventions.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Point-of-Care Testing , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , Equipment Design , Humans , Molecular Diagnostic Techniques/economics , Nucleic Acid Amplification Techniques/economics , Point-of-Care Testing/economics , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors
12.
J Colloid Interface Sci ; 585: 229-236, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33285461

ABSTRACT

HYPOTHESIS: Protein nanoparticles have attracted increased interest due to their broad applications ranging from drug delivery and vaccines to biocatalysts and biosensors. The morphology and the size of the nanoparticles play a crucial role in determining their suitability for different applications. Yet, effectively controlling the size of the nanoparticles is still a significant challenge in their manufacture. The hypothesis of this paper is that the assembly conditions and size of protein particles can be tuned via a mechanical route by simply modifying the mixing time and strength, while keeping the chemical parameters constant. EXPERIMENTAL: We use an acoustically actuated, high throughput, ultrafast, microfluidic mixer for the assembly of protein particles with tuneable sizes. The performance of the acoustic micro-mixer is characterized via Laser Doppler Vibrometry and image processing. The assembly of protein nanoparticles is monitored by dynamic light scattering (DLS) and transmission electron microscopy (TEM). FINDINGS: By changing actuation parameters, the turbulence and mixing in the microchannel can be precisely varied to control the initiation of protein particle assembly while the solution conditions of assembly (pH and ionic strength) are kept constant. Importantly, mixing times as low as 6 ms can be achieved for triggering protein assembly in the microfluidic channel. In comparison to the conventional batch process of assembly, the acoustic microfluidic mixer approach produces smaller particles with a more uniform size distribution, promising a new way to manufacture protein particles with controllable quality.

13.
Nanoscale ; 12(38): 19861-19869, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32970059

ABSTRACT

Noble-metal aerogels (NMAs) including silver aerogels have drawn increasing attention because of their highly conductive networks, large surface areas, and abundant optically/catalytically active sites. However, the current approaches of fabricating silver aerogels are tedious and time-consuming. In this regard, it is highly desirable to develop a simple and effective method for preparing silver aerogels. Herein, we report a facile strategy to fabricate silver gels via the in situ synthesis of silver nanowires (AgNWs). The obtained AgNW aerogels show superior electrical conductivity, ultralow density, and good mechanical robustness. AgNW aerogels with a density of 24.3 mg cm-3 display a conductivity of 2.1 × 105 S m-1 and a Young's modulus of 38.7 kPa. Furthermore, using an infiltration-air-drying-crosslinking technique, polydimethylsiloxane (PDMS) was introduced into 3 dimensional (3D) AgNW networks for preparing silver aerogel/elastomer composite materials. The obtained AgNW/PDMS aerogel composite exhibits outstanding elasticity while retaining excellent electrical conductivity. The fast piezoresistive response proves that the aerogel composite has a potential application for vibration sensors.

14.
Lab Chip ; 20(3): 582-591, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31898701

ABSTRACT

We present an acoustically actuated microfluidic mixer, which can operate at flowrates reaching 8 ml min-1, providing a 50-fold improvement in throughput compared to previously demonstrated acoustofluidic approaches. The device consists of a robust silicon based micro-mechanical oscillator, sandwiched between two polymeric channels which guide the fluids in and out of the system. The chip is actuated by application of an oscillatory electrical signal onto a piezoelectric disk coupled to the substrate by adhesive. At the optimal frequency, this acoustofluidic system can homogenise two fluids with a relative mixing efficiency of 91%, within 4.1 ms from first contact. The micromixer has been used to synthesize two different systems: Budesonide nanodrugs with an average diameter of 80 ± 22 nm, and DNA nanoparticles with an average diameter of 63.3 ± 24.7 nm.

15.
Lab Chip ; 20(2): 253-265, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31854405

ABSTRACT

An on-demand droplet injection method for controlled delivery of nanolitre-volume liquid samples to scientific instruments for subsequent analysis is presented. We employ pulsed focussed surface acoustic waves (SAW) to eject droplets from an enclosed microfluidic channel into an open environment. The 3D position of individual droplets and their time of arrival can be precisely controlled to within 61 µs in a 500 µm square target region 40 µm wide. The continuous ejection rate of 16 000 droplets per second can be tuned to produce pulsed trains of droplets from 0 up to 357 Hz. The main benefit of this technique is its ease of integration with complex microfluidic processing steps, such as droplet merging, sorting, and encapsulation, prior to sample delivery. With its ability to precisely deliver a small quantity of fluid to a pre-defined location this technology is applicable in X-ray based molecular studies, including the rapidly expanding field of X-ray free electron lasers. Fabrication procedures for this device, the underlying forcing mechanism, the role of nozzle design, and demonstration of the performance in both continuous and on-demand modes are reported.

16.
Int J Nanomedicine ; 13: 1353-1359, 2018.
Article in English | MEDLINE | ID: mdl-29563792

ABSTRACT

BACKGROUND: This article presents an acoustically enhanced microfluidic mixer to generate highly uniform and ultra-fine nanoparticles, offering significant advantages over conventional liquid antisolvent techniques. METHODS: The method employed a 3D microfluidic geometry whereby two different phases - solvent and antisolvent - were introduced at either side of a 1 µm thick resonating membrane, which contained a through-hole. The vibration of the membrane rapidly and efficiently mixed the two phases, at the location of the hole, leading to the formation of nanoparticles. RESULTS: The versatility of the device was demonstrated by synthesizing budesonide (a common asthma drug) with a mean diameter of 135.7 nm and a polydispersity index of 0.044. CONCLUSION: The method offers a 40-fold reduction in the size of synthesized particles combined with a substantial improvement in uniformity, achieved without the need of stabilizers.


Subject(s)
Acoustics , Microfluidics/instrumentation , Microfluidics/methods , Nanoparticles/chemistry , Pharmaceutical Preparations/chemical synthesis , Budesonide/chemical synthesis , Particle Size , Solvents
17.
Lab Chip ; 17(14): 2372-2394, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28631799

ABSTRACT

The transition from micro well plate and robotics based high throughput screening (HTS) to chip based screening has already started. This transition promises reduced droplet volumes thereby decreasing the amount of fluids used in these studies. Moreover, it significantly boosts throughput allowing screening to keep pace with the overwhelming number of molecular targets being discovered. In this review, we analyse state-of-the-art droplet control technologies that exhibit potential to be used in this new generation of screening devices. Since these systems are enclosed and usually planar, even some of the straightforward methods used in traditional HTS such as pipetting and reading can prove challenging to replicate in microfluidic high throughput screening (µHTS). We critically review the technologies developed for this purpose in depth, describing the underlying physics and discussing the future outlooks.

18.
ACS Appl Mater Interfaces ; 9(13): 11345-11349, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28332815

ABSTRACT

Ultralight graphene elastomer-based flexible sensors are developed to detect subtle vibrations within a broad frequency range. The same device can be employed as an accelerometer, tested within the experimental bandwidth of 20-300 Hz as well as a microphone, monitoring sound pressures from 300 to 20 000 Hz. The sensing element does not contain any metal parts, making them undetectable by external sources and can provide an acceleration sensitivity of 2.6 mV/g, which is higher than or comparable to those of rigid Si-based piezoresistive microelectromechanical systems (MEMS).

19.
Lab Chip ; 17(3): 438-447, 2017 01 31.
Article in English | MEDLINE | ID: mdl-27995242

ABSTRACT

Mono-disperse droplet formation in microfluidic devices allows the rapid production of thousands of identical droplets and has enabled a wide range of chemical and biological studies through repeat tests performed at pico-to-nanoliter volume samples. However, it is exactly this efficiency of production which has hindered the ability to carefully control the location and quantity of the distribution of various samples on a chip - the key requirement for replicating micro well plate based high throughput screening in vastly reduced volumetric scales. To address this need, here, we present a programmable microfluidic chip capable of pipetting samples from mobile droplets with high accuracy using a non-contact approach. Pipette on a chip (PoaCH) system selectively ejects (pipettes) part of a droplet into a customizable reaction chamber using surface acoustic waves (SAWs). Droplet pipetting is shown to range from as low as 150 pL up to 850 pL with precision down to tens of picoliters. PoaCH offers ease of integration with existing lab on a chip systems as well as a robust and contamination-free droplet manipulation technique in closed microchannels enabling potential implementation in screening and other studies.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Sound , Equipment Design , Hydrodynamics , Models, Theoretical , Surface Properties
20.
Lab Chip ; 16(19): 3756-3766, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27722363

ABSTRACT

The use of ultrasonic fields to manipulate particles, cells and droplets has become widespread in lab on a chip (LOC) systems. There are two dominant actuation methods, the use of bulk acoustic waves (BAW) or surface acoustic waves (SAW). The development of BAW actuated systems have been underpinned by a robust understanding of the link between the ultrasonic field and forces which can be generated. In this work, we examine this link for standing surface acoustic waves (SSAW) comparing the relative strengths of streaming induced drag and acoustic radiation forces on suspended particles. To achieve this we have employed boundary conditions which accurately capture the travelling wave components of the pseudo-standing wave field, describe the key features of the acoustic radiation force fields and the acoustic streaming fields which can be generated, and finally we show that the relative importance of these two mechanisms is spatially dependant within a fluid chamber. The boundary condition used models the SSAW as two counter-propagating travelling waves, rather than assuming a standing wave directly. This allows the accurate inclusion of energy decay as the SAW couples into the fluid chamber and the resulting travelling wave component. This study shows that this previously neglected complexity of the SAW field is a critical factor in the nature of the resultant streaming field, as it gives rise to strong streaming rolls at the channel walls, which we validate experimentally. These rolls result in spatial variations of the dominant forces which in turn varies particle migration patterns spatially across the fluid domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...