Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Public Health ; 16(3): 320-331, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36657243

ABSTRACT

BACKGROUND: There is paucity of data describing the impact of COVID-19 pandemic on antimicrobial resistance. This review evaluated the changes in the rate of multidrug resistant gram negative and gram positive bacteria during the COVID-19 pandemic. METHODS: A search was conducted in PubMed, Science Direct, and Google Scholar databases to identify eligible studies. Studies that reported the impact of COVID-19 pandemic on carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum beta-lactamase inhibitor (ESBL)-producing Enterobacteriaceae, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Pseudomonas aeruginosa (CPE) were selected. Studies published in English language from the start of COVID-19 pandemic to July 2022 were considered for inclusion. RESULTS: Thirty eligible studies were selected and most of them were from Italy (n = 8), Turkey (n = 3) and Brazil (n = 3). The results indicated changes in the rate of multidrug resistant bacteria, and the changes varied between the studies. Most studies (54.5%) reported increase in MRSA infection/colonization during the pandemic, and the increase ranged from 4.6 to 170.6%. Five studies (55.6%) reported a 6.8-65.1% increase in VRE infection/colonization during the pandemic. A 2.4-58.2% decrease in ESBL E. coli and a 1.8-13.3% reduction in ESBL Klebsiella pneumoniae was observed during the pandemic. For CRAB, most studies (58.3%) reported 1.5-621.6% increase in infection/colonization during the pandemic. Overall, studies showed increase in the rate of CRE infection/colonization during the pandemic. There was a reduction in carbapenem-resistant E. coli during COVID-19 pandemic, and an increase in carbapenem-resistant K. pneumoniae. Most studies (55.6%) showed 10.4 - 40.9% reduction in the rate of CRPA infection during the pandemic. CONCLUSION: There is an increase in the rate of multidrug resistant gram positive and gram negative bacteria during the COVID-19 pandemic. However, the rate of ESBL-producing Enterobacteriaceae and CRPA has decrease during the pandemic. Both infection prevention and control strategies and antimicrobial stewardship should be strengthen to address the increasing rate of multidrug resistant gram positive and gram negative bacteria.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pandemics , Gram-Negative Bacteria , Escherichia coli , Gram-Positive Bacteria , Enterobacteriaceae , Klebsiella pneumoniae , Carbapenems , Microbial Sensitivity Tests
2.
Microsc Microanal ; 26(2): 348-362, 2020 04.
Article in English | MEDLINE | ID: mdl-32131927

ABSTRACT

Hymenolepis nana, typically a parasite found in conventionally established mouse colonies, has zoonotic potential characterized by autoinfection and direct life cycle. The objective of this study was to determine the rate of parasite infection in laboratory mice. The hymenolepidide cestode infected 40% of the 50 mice sampled. The rate of infection in males (52%) was higher than in females (28%). Morphological studies on the cestode parasite showed that worms had a globular scolex with four suckers, a retractable rostellum with 20-30 hooks, and a short unsegmented neck. In addition, the remaining strobila consisted of immature, mature, and gravid proglottids, irregularly alternating genital pores, lobulated ovaries, postovarian vitelline glands, and uteri with up to 200 eggs in their gravid proglottids. The parasite taxonomy was confirmed by using molecular characterization based on the sequence analysis of the mitochondrial cytochrome c oxidase subunit 1 (mtCOX1) gene. The parasite recovered was up to 80% identical to other species in GenBank. High blast scores and low divergence were noted between the isolated parasite and previously described H. nana (gb| AP017666.1). The phylogenetic analysis using the COX1 sequence places this hymenolepidid species of the order Cyclophyllidea.


Subject(s)
Hymenolepiasis/pathology , Hymenolepis nana/anatomy & histology , Hymenolepis nana/genetics , Animals , Cestoda , Cyclooxygenase 1/genetics , DNA, Helminth , Disease Models, Animal , Female , Male , Mice , Phylogeny , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL
...