Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 16(1): 53-56, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29226938

ABSTRACT

A palladium mediated C-H aziridination reaction of 3,3,5,5-substituted-piperazin-2-ones has been developed using phenyliodonium diacetate (PIDA) and succinic acid to give synthetically useful bicyclic aziridines, in moderate to good yields. Succinic acid was found to be key for selectively promoting C-N bond formation (aziridination) and suppressing competitive acetoxylation. Analysis of the reaction kinetics revealed the role of succinic acid in promoting an equilibrium between monomeric and dimeric palladium species in the rate determining step of the reaction. The aziridines can be ring-opened by nucleophiles under Lewis or Brønsted acidic conditions to give formal C-H functionalized products. The reaction conditions can be further manipulated to produce acetoxylated, diacetoxylated and even triacetoxylated materials through the use of acetic acid and increased oxidant stoichiometry.

2.
Bioorg Med Chem ; 23(11): 2666-79, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25614112

ABSTRACT

Herein, we report on work towards the development of a new strategy for the synthesis of rare and biologically interesting indolizin-5(3H)-ones, which is based around the use of ring-closing metathesis to construct the carbocyclic ring system. This study has provided insights into the general stability of indolizin-5(3H)-ones and their tendency to exist as the tautomeric indolizin-5-ols. Furthermore, this approach has allowed access to other novel structurally related compounds based around unusual 6,5-azabicyclic scaffolds, which are also difficult to generate using typical methods. The azabicyclic compounds synthesized in this study reside in attractive regions of heterocyclic chemical space that are underexploited in current drug and agrochemical discovery efforts.


Subject(s)
Aza Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemical synthesis , Cycloaddition Reaction , Drug Discovery , Indolizines/chemical synthesis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...