Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ISA Trans ; 126: 203-212, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34446285

ABSTRACT

Diabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific community has directed research in developing technologies to reduce T1DM complications. This contribution is related to a feedback control strategy for blood glucose management in population samples of ten virtual adult subjects, adolescents and children. This scheme focuses on the development of an inverse optimal control (IOC) proposal which is integrated by neural identification, a multi-step prediction (MSP) strategy, and Takagi-Sugeno (T-S) fuzzy inference to shape the convenient insulin infusion in the treatment of T1DM patients. The MSP makes it possible to estimate the glucose dynamics 15 min in advance; therefore, this estimation allows the Neuro-Fuzzy-IOC (NF-IOC) controller to react in advance to prevent hypoglycemic and hyperglycemic events. The T-S fuzzy membership functions are defined in such a way that the respective inferences change basal infusion rates for each patient's condition. The results achieved for scenarios simulated in Uva/Padova virtual software illustrate that this proposal is suitable to maintain blood glucose levels within normoglycemic values (70-115 mg/dL); furthermore, this level remains less than 250 mg/dL during the postprandial event. A comparison between a simple neural IOC (NIOC) and the proposed NF-IOC is carried out using the analysis for control variability named CVGA chart included in the Uva/Padova software. This analysis highlights the improvement of the NF-IOC treatment, proposed in this article, on the NIOC approach because each subject is located inside safe zones for the entire duration of the simulation.


Subject(s)
Diabetes Mellitus, Type 1 , Adolescent , Adult , Algorithms , Blood Glucose/analysis , Child , Computer Simulation , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents , Insulin/therapeutic use
2.
PeerJ Comput Sci ; 7: e393, 2021.
Article in English | MEDLINE | ID: mdl-33817039

ABSTRACT

Artificial intelligence techniques have been used in the industry to control complex systems; among these proposals, adaptive Proportional, Integrative, Derivative (PID) controllers are intelligent versions of the most used controller in the industry. This work presents an adaptive neuron PD controller and a multilayer neural PD controller for position tracking of a mobile manipulator. Both controllers are trained by an extended Kalman filter (EKF) algorithm. Neural networks trained with the EKF algorithm show faster learning speeds and convergence times than the training based on backpropagation. The integrative term in PID controllers eliminates the steady-state error, but it provokes oscillations and overshoot. Moreover, the cumulative error in the integral action may produce windup effects such as high settling time, poor performance, and instability. The proposed neural PD controllers adjust their gains dynamically, which eliminates the steady-state error. Then, the integrative term is not required, and oscillations and overshot are highly reduced. Removing the integral part also eliminates the need for anti-windup methodologies to deal with the windup effects. Mobile manipulators are popular due to their mobile capability combined with a dexterous manipulation capability, which gives them the potential for many industrial applications. Applicability of the proposed adaptive neural controllers is presented by simulating experimental results on a KUKA Youbot mobile manipulator, presenting different tests and comparisons with the conventional PID controller and an existing adaptive neuron PID controller.

3.
PeerJ Comput Sci ; 7: e419, 2021.
Article in English | MEDLINE | ID: mdl-33817055

ABSTRACT

This article presents an approach to solve the inverse kinematics of cooperative mobile manipulators for coordinate manipulation tasks. A self-adaptive differential evolution algorithm is used to solve the inverse kinematics as a global constrained optimization problem. A kinematics model of the cooperative mobile manipulators system is proposed, considering a system with two omnidirectional platform manipulators with n DOF. An objective function is formulated based on the forward kinematics equations. Consequently, the proposed approach does not suffer from singularities because it does not require the inversion of any Jacobian matrix. The design of the objective function also contains penalty functions to handle the joint limits constraints. Simulation experiments are performed to test the proposed approach for solving coordinate path tracking tasks. The solutions of the inverse kinematics show precise and accurate results. The experimental setup considers two mobile manipulators based on the KUKA Youbot system to demonstrate the applicability of the proposed approach.

4.
Front Physiol ; 11: 976, 2020.
Article in English | MEDLINE | ID: mdl-32982771

ABSTRACT

p53 regulates the cellular response to genotoxic damage and prevents carcinogenic events. Theoretical and experimental studies state that the p53-Mdm2 network constitutes the core module of regulatory interactions activated by cellular stress induced by a variety of signaling pathways. In this paper, a strategy to control the p53-Mdm2 network regulated by p14ARF is developed, based on the pinning control technique, which consists into applying local feedback controllers to a small number of nodes (pinned ones) in the network. Pinned nodes are selected on the basis of their importance level in a topological hierarchy, their degree of connectivity within the network, and the biological role they perform. In this paper, two cases are considered. For the first case, the oscillatory pattern under gamma-radiation is recovered; afterward, as the second case, increased expression of p53 level is taken into account. For both cases, the control law is applied to p14ARF (pinned node based on a virtual leader methodology), and overexpressed Mdm2-mediated p53 degradation condition is considered as carcinogenic initial behavior. The approach in this paper uses a computational algorithm, which opens an alternative path to understand the cellular responses to stress, doing it possible to model and control the gene regulatory network dynamics in two different biological contexts. As the main result of the proposed control technique, the two mentioned desired behaviors are obtained.

5.
IET Syst Biol ; 13(1): 8-15, 2019 02.
Article in English | MEDLINE | ID: mdl-30774111

ABSTRACT

The effect of meal on blood glucose concentration is a key issue in diabetes mellitus because its estimation could be very useful in therapy decisions. In the case of type 1 diabetes mellitus (T1DM), the therapy based on automatic insulin delivery requires a closed-loop control system to maintain euglycaemia even in the postprandial state. Thus, the mathematical modelling of glucose metabolism is relevant to predict the metabolic state of a patient. Moreover, the eating habits are characteristic of each person, so it is of interest that the mathematical models of meal intake allow to personalise the glycaemic state of the patient using therapy historical data, that is, daily measurements of glucose and records of carbohydrate intake and insulin supply. Thus, here, a model of glucose metabolism that includes the effects of meal is analysed in order to establish criteria for data-based personalisation. The analysis includes the sensitivity and identifiability of the parameters, and the parameter estimation problem was resolved via two algorithms: particle swarm optimisation and evonorm. The results show that the mathematical model can be a useful tool to estimate the glycaemic status of a patient and personalise it according to her/his historical data.


Subject(s)
Blood Glucose/metabolism , Computational Biology/methods , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Insulin/metabolism , Models, Statistical , Postprandial Period , Adult , Algorithms , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Female , Humans , Male , Young Adult
6.
J Integr Neurosci ; 17(3-4): 679-693, 2018.
Article in English | MEDLINE | ID: mdl-30103346

ABSTRACT

Cognitive processing is needed to elicit emotional responses. At the same time, emotional responses modulate and guide cognition to enable adaptive responses to the environment. However, most empirical studies and theoretical models of cognitive functions have been investigated without taking into account emotion, which is considered interference that is counterproductive to the correct functioning of the cognitive system. To understand how complex behaviors are carried out in the brain, an understanding of the interactions between emotion and cognition may be indispensable. Given the enormous scope of this topic for both cognition and emotion, these concepts will not be further defined here; instead, this review will be relatively narrow in scope and will emphasize several brain systems involved in the interactions between emotion and working memory because an important dimension of cognition involves working memory function. In attempting to understand the relationship between emotion and working memory, we will describe the projections of a set of brain structures that support our emotional life and the neuromodulator dopamine (which is also involved in emotion processing and incentive motivational behavior) in the prefrontal cortex. According to the literature, working memory engages the cortical regions. Thus, the prefrontal cortex, particularly the dorsolateral prefrontal cortex (DLPFC), although commonly viewed as a purely cognitive area, provides a test for the hypothesis that working memory and emotion are strongly integrated in the brain. In this review, we provide an overview of neuropsychological, neuroanatomical and molecular evidence, with the aim of establishing the extent to which working memory and emotion are related.


Subject(s)
Brain/physiology , Cognition/physiology , Emotions/physiology , Memory, Short-Term/physiology , Animals , Brain/anatomy & histology , Humans
7.
Sensors (Basel) ; 17(8)2017 Aug 12.
Article in English | MEDLINE | ID: mdl-28805689

ABSTRACT

In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

8.
Evol Bioinform Online ; 12: 285-302, 2016.
Article in English | MEDLINE | ID: mdl-27980384

ABSTRACT

With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

9.
Int J Neural Syst ; 21(6): 491-504, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22131301

ABSTRACT

This paper deals with the blood glucose level modeling for Type 1 Diabetes Mellitus (T1DM) patients. The model is developed using a recurrent neural network trained with an extended Kalman filter based algorithm in order to develop an affine model, which captures the nonlinear behavior of the blood glucose metabolism. The goal is to derive a dynamical mathematical model for the T1DM as the response of a patient to meal and subcutaneous insulin infusion. Experimental data given by continuous glucose monitoring system is utilized for identification and for testing the applicability of the proposed scheme to T1DM subjects.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Models, Biological , Models, Theoretical , Neural Networks, Computer , Algorithms , Diabetes Mellitus, Type 1/drug therapy , Humans , Insulin/therapeutic use
10.
IEEE Trans Neural Netw ; 22(3): 497-505, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21245007

ABSTRACT

A nonlinear discrete-time neural observer for discrete-time unknown nonlinear systems in presence of external disturbances and parameter uncertainties is presented. It is based on a discrete-time recurrent high-order neural network trained with an extended Kalman-filter based algorithm. This brief includes the stability proof based on the Lyapunov approach. The applicability of the proposed scheme is illustrated by real-time implementation for a three phase induction motor.


Subject(s)
Algorithms , Artificial Intelligence , Neural Networks, Computer , Nonlinear Dynamics , Computer Simulation/standards , Teaching , Time Factors
11.
Int J Neural Syst ; 20(1): 29-38, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20180251

ABSTRACT

This paper focusses on a novel discrete-time reduced order neural observer for nonlinear systems, which model is assumed to be unknown. This neural observer is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF)-based algorithm, using a parallel configuration. This work includes the stability proof of the estimation error on the basis of the Lyapunov approach; to illustrate the applicability, simulation results for a nonlinear oscillator are included.


Subject(s)
Neural Networks, Computer , Nonlinear Dynamics , Signal Processing, Computer-Assisted , Algorithms , Computer Simulation
12.
IEEE Trans Neural Netw ; 18(4): 1185-95, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17668670

ABSTRACT

This paper deals with adaptive tracking for discrete-time multiple-input-multiple-output (MIMO) nonlinear systems in presence of bounded disturbances. In this paper, a high-order neural network (HONN) structure is used to approximate a control law designed by the backstepping technique, applied to a block strict feedback form (BSFF). This paper also includes the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system, including the extended Kalman filter (EKF)-based NN learning algorithm. Applicability of the scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor.


Subject(s)
Algorithms , Decision Support Techniques , Models, Theoretical , Neural Networks, Computer , Nonlinear Dynamics , Signal Processing, Computer-Assisted , Computer Simulation , Feedback
SELECTION OF CITATIONS
SEARCH DETAIL
...