Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37508349

ABSTRACT

This article focuses on the qualitative analysis of complex dynamics arising in a few mathematical models in neuroscience context. We first discuss the dynamics arising in the three-dimensional FitzHugh-Rinzel (FHR) model and then illustrate those arising in a class of non-homogeneous FitzHugh-Nagumo (Nh-FHN) reaction-diffusion systems. FHR and Nh-FHN models can be used to generate relevant complex dynamics and wave-propagation phenomena in neuroscience context. Such complex dynamics include canards, mixed-mode oscillations (MMOs), Hopf-bifurcations and their spatially extended counterpart. Our article highlights original methods to characterize these complex dynamics and how they emerge in ordinary differential equations and spatially extended models.

2.
Chaos ; 32(8): 083121, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36049912

ABSTRACT

In this article, we report on the generation and propagation of traveling pulses in a homogeneous network of diffusively coupled, excitable, slow-fast dynamical neurons. The spatially extended system is modeled using the nearest neighbor coupling theory, in which the diffusion part measures the spatial distribution of coupling topology. We derive analytically the conditions for traveling wave profiles that allow the construction of the shape of traveling nerve impulses. The analytical and numerical results are used to explore the nature of propagating pulses. The symmetric or asymmetric nature of traveling pulses is characterized, and the wave velocity is derived as a function of system parameters. Moreover, we present our results for an extended excitable medium by considering a slow-fast biophysical model with a homogeneous, diffusive coupling that can exhibit various traveling pulses. The appearance of series of pulses is an interesting phenomenon from biophysical and dynamical perspective. Varying the perturbation and coupling parameters, we observe the propagation of activities with various amplitude modulations and transition phases of different wave profiles that affect the speed of pulses in certain parameter regimes. We observe different types of traveling pulses, such as envelope solitons and multi-bump solutions, and show how system parameters and coupling play a major role in the formation of different traveling pulses. Finally, we obtain the conditions for stable and unstable plane waves.


Subject(s)
Models, Neurological , Neurons , Diffusion , Neurons/physiology
4.
Math Med Biol ; 39(1): 1-48, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35045180

ABSTRACT

In this paper, we propose and analyse a compartmental model of COVID-19 to predict and control the outbreak. We first formulate a comprehensive mathematical model for the dynamical transmission of COVID-19 in the context of sub-Saharan Africa. We provide the basic properties of the model and compute the basic reproduction number $\mathcal {R}_0$ when the parameter values are constant. After, assuming continuous measurement of the weekly number of newly COVID-19 detected cases, newly deceased individuals and newly recovered individuals, the Ensemble of Kalman filter (EnKf) approach is used to estimate the unmeasured variables and unknown parameters, which are assumed to be time-dependent using real data of COVID-19. We calibrated the proposed model to fit the weekly data in Cameroon and Gabon before, during and after the lockdown. We present the forecasts of the current pandemic in these countries using the estimated parameter values and the estimated variables as initial conditions. During the estimation period, our findings suggest that $\mathcal {R}_0 \approx 1.8377 $ in Cameroon, while $\mathcal {R}_0 \approx 1.0379$ in Gabon meaning that the disease will not die out without any control measures in theses countries. Also, the number of undetected cases remains high in both countries, which could be the source of the new wave of COVID-19 pandemic. Short-term predictions firstly show that one can use the EnKf to predict the COVID-19 in Sub-Saharan Africa and that the second vague of the COVID-19 pandemic will still increase in the future in Gabon and in Cameroon. A comparison between the basic reproduction number from human individuals $\mathcal {R}_{0h}$ and from the SARS-CoV-2 in the environment $\mathcal {R}_{0v}$ has been done in Cameroon and Gabon. A comparative study during the estimation period shows that the transmissions from the free SARS-CoV-2 in the environment is greater than that from the infected individuals in Cameroon with $\mathcal {R}_{0h}$ = 0.05721 and $\mathcal {R}_{0v}$ = 1.78051. This imply that Cameroonian apply distancing measures between individual more than with the free SARS-CoV-2 in the environment. But, the opposite is observed in Gabon with $\mathcal {R}_{0h}$ = 0.63899 and $\mathcal {R}_{0v}$ = 0.39894. So, it is important to increase the awareness campaigns to reduce contacts from individual to individual in Gabon. However, long-term predictions reveal that the COVID-19 detected cases will play an important role in the spread of the disease. Further, we found that there is a necessity to increase timely the surveillance by using an awareness program and a detection process, and the eradication of the pandemic is highly dependent on the control measures taken by each government.


Subject(s)
COVID-19 , Epidemiological Models , Pandemics , COVID-19/epidemiology , Cameroon/epidemiology , Communicable Disease Control , Gabon/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2
5.
Int J Neural Syst ; 31(2): 2050063, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33269660

ABSTRACT

The nematode Caenorhabditis elegans (C. elegans) is a well-known model organism in neuroscience. The relative simplicity of its nervous system, made up of few hundred neurons, shares some essential features with more sophisticated nervous systems, including the human one. If we are able to fully characterize the nervous system of this organism, we will be one step closer to understanding the mechanisms underlying the behavior of living things. Following a recently conducted electrophysiological survey on different C. elegans neurons, this paper aims at modeling the three non-spiking RIM, AIY and AFD neurons (arbitrarily named with three upper case letters by convention). To date, they represent the three possible forms of non-spiking neuronal responses of the C. elegans. To achieve this objective, we propose a conductance-based neuron model adapted to the electrophysiological features of each neuron. These features are based on current biological research and a series of in-silico experiments which use differential evolution to fit the model to experimental data. From the obtained results, we formulate a series of biological hypotheses regarding currents involved in the neuron dynamics. These models reproduce experimental data with a high degree of accuracy while being biologically consistent with state-of-the-art research.


Subject(s)
Caenorhabditis elegans , Neurons , Animals , Humans
6.
Biology (Basel) ; 9(6)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599867

ABSTRACT

This article describes a simple Susceptible Infected Recovered (SIR) model fitting with COVID-19 data for the month of March 2020 in New York (NY) state. The model is a classical SIR, but is non-autonomous; the rate of susceptible people becoming infected is adjusted over time in order to fit the available data. The death rate is also secondarily adjusted. Our fitting is made under the assumption that due to limiting number of tests, a large part of the infected population has not been tested positive. In the last part, we extend the model to take into account the daily fluxes between New Jersey (NJ) and NY states and fit the data for both states. Our simple model fits the available data, and illustrates typical dynamics of the disease: exponential increase, apex and decrease. The model highlights a decrease in the transmission rate over the period which gives a quantitative illustration about how lockdown policies reduce the spread of the pandemic. The coupled model with NY and NJ states shows a wave in NJ following the NY wave, illustrating the mechanism of spread from one attractive hot spot to its neighbor.

7.
Phys Rev E ; 99(4-1): 042307, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108709

ABSTRACT

We study the spatiotemporal dynamics of a conductance-based neuronal cable. The processes of one-dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage. A 2D Morris-Lecar (ML) model is introduced to investigate the nonlinear responses of an excitable conductance-based neuronal cable. We explore the parameter space of the uncoupled ML model and, based on the bifurcation diagram (as a function of stimulus current), we analyze the 1D diffusion dynamics in three regimes: phasic spiking, coexistence states (tonic spiking and phasic spiking exist together), and a quiescent state. We show (depending on parameters) that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, we explore a 2D diffusion acting on the membrane voltage, where striped and hexagonlike patterns can be observed. To validate our numerical results and check the stability of the existing patterns generated by 2D diffusion, we use amplitude equations based on multiple-scale analysis. We incorporate 1D diffusion in an extended 3D version of the ML model, in which irregular bursting emerges for a certain diffusion strength. The generated patterns may have potential applications in nonlinear neuronal responses and signal transmission.

8.
Acta Biotheor ; 66(4): 367-378, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29808449

ABSTRACT

The main concern of this paper is to study the dynamic of a predator-prey system with diffusion. It incorporates the Holling-type-II and a modified Leslie-Gower functional responses under Robin boundary conditions. More concretely, we study the dissipativeness of the system by using the comparison principle, and we derive a criteria for permanence and for predator extinction.


Subject(s)
Models, Biological , Predatory Behavior , Animals , Diffusion , Ecology , Ecosystem , Food Chain , Population Dynamics
9.
Math Biosci Eng ; 15(2): 441-460, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29161844

ABSTRACT

In this paper, a network model has been proposed to control dengue disease transmission considering host-vector dynamics in n patches. The control of mosquitoes is performed by SIT. In SIT, the male insects are sterilized in the laboratory and released into the environment to control the number of offsprings. The basic reproduction number has been computed. The existence and stability of various states have been discussed. The bifurcation diagram has been plotted to show the existence and stability regions of disease-free and endemic states for an isolated patch. The critical level of sterile male mosquitoes has been obtained for the control of disease. The basic reproduction number for n patch network model has been computed. It is evident from numerical simulations that SIT control in one patch may control the disease in the network having two/three patches with suitable coupling among them.


Subject(s)
Dengue/epidemiology , Dengue/transmission , Epidemics , Mosquito Control/methods , Aedes , Animals , Basic Reproduction Number , Female , Humans , Male , Models, Theoretical , Mosquito Vectors
10.
Math Biosci ; 295: 48-54, 2018 01.
Article in English | MEDLINE | ID: mdl-29104133

ABSTRACT

Geometrical Singular Perturbation Theory has been successful to investigate a broad range of biological problems with different time scales. The aim of this paper is to apply this theory to a predator-prey model of modified Leslie-Gower type for which we consider that prey reproduces mush faster than predator. This naturally leads to introduce a small parameter ϵ which gives rise to a slow-fast system. This system has a special folded singularity which has not been analyzed in the classical work [15]. We use the blow-up technique to visualize the behavior near this fold point P. Outside of this region the dynamics are given by classical regular and singular perturbation theory. This allows to quantify geometrically the attractive limit-cycle with an error of O(ϵ) and shows that it exhibits the canard phenomenon while crossing P.


Subject(s)
Models, Biological , Predatory Behavior , Animals , Food Chain , Mathematical Concepts , Population Dynamics
11.
Acta Biotheor ; 64(4): 311-325, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27770317

ABSTRACT

This article is devoted to the characterization of the basin of attraction of pattern solutions for some slow-fast reaction-diffusion systems with a symmetric property and an underlying oscillatory reaction part. We characterize some subsets of initial conditions that prevent the dynamical system to evolve asymptotically toward solutions which are homogeneous in space. We also perform numerical simulations that illustrate theoretical results and give rise to symmetric and non-symmetric pattern solutions. We obtain these last solutions by choosing particular random initial conditions.


Subject(s)
Computer Simulation , Mathematics , Models, Theoretical , Numerical Analysis, Computer-Assisted , Diffusion , Kinetics
12.
Sci Rep ; 4: 6224, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25169150

ABSTRACT

Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.


Subject(s)
Social Networking , Cooperative Behavior , Game Theory , Humans , Interpersonal Relations , Models, Statistical
13.
Article in English | MEDLINE | ID: mdl-24125233

ABSTRACT

Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. In complex networks, because of the difficulty of formulating the replicator dynamics, most of the previous studies are confined to a numerical level. In this paper, we introduce a vectorial formulation to derive three classes of individuals' payoff analytically. The three classes are pure cooperators, pure defectors, and fence-sitters. Here, fence-sitters are the individuals who change their strategies at least once in the strategy evolutionary process. As a general approach, our vectorial formalization can be applied to all the two-strategy games. To clarify the function of the fence-sitters, we define a parameter, payoff memory, as the number of rounds that the individuals' payoffs are aggregated. We observe that the payoff memory can control the fence-sitters' effects and the level of cooperation efficiently. Our results indicate that the fence-sitters' role is nontrivial in the complex topologies, which protects cooperation in an indirect way. Our results may provide a better understanding of the composition of cooperators in a circumstance where the temptation to defect is larger.

14.
Chaos ; 23(3): 033125, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089961

ABSTRACT

We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.


Subject(s)
Models, Neurological , Nerve Net , Neurons/physiology , Action Potentials/physiology , Algorithms , Animals , Biophysics/methods , Computer Simulation , Humans , Neurons/metabolism , Nonlinear Dynamics , Normal Distribution , Probability , Stochastic Processes , Time Factors
15.
Math Biosci Eng ; 9(2): 369-92, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22901069

ABSTRACT

Since the 1980s, there has been a worldwide re-emergence of vector-borne diseases including Malaria, Dengue, Yellow fever or, more recently, chikungunya. These viruses are arthropod-borne viruses (arboviruses) transmitted by arthropods like mosquitoes of Aedes genus. The nature of these arboviruses is complex since it conjugates human, environmental, biological and geographical factors. Recent researchs have suggested, in particular during the Reunion Island epidemic in 2006, that the transmission by Aedes albopictus (an Aedes genus specie) has been facilitated by genetic mutations of the virus and the vector capacity to adapt to non tropical regions. In this paper we formulate an optimal control problem, based on biological observations. Three main efforts are considered in order to limit the virus transmission. Indeed, there is no vaccine nor specific treatment against chikungunya, that is why the main measures to limit the impact of such epidemic have to be considered. Therefore, we look at time dependent breeding sites destruction, prevention and treatment efforts, for which optimal control theory is applied. Using analytical and numerical techniques, it is shown that there exist cost effective control efforts.


Subject(s)
Alphavirus Infections/prevention & control , Disease Eradication/methods , Models, Biological , Mosquito Control/methods , Aedes/virology , Alphavirus Infections/economics , Alphavirus Infections/transmission , Animals , Chikungunya Fever , Disease Eradication/economics , Female , Humans , Larva/drug effects , Numerical Analysis, Computer-Assisted
16.
Chaos ; 22(4): 043114, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23278049

ABSTRACT

We present an explicit solution based on the phase-amplitude approximation of the Fokker-Planck equation associated with the Langevin equation of the birhythmic modified van der Pol system. The solution enables us to derive probability distributions analytically as well as the activation energies associated with switching between the coexisting different attractors that characterize the birhythmic system. Comparing analytical and numerical results we find good agreement when the frequencies of both attractors are equal, while the predictions of the analytic estimates deteriorate when the two frequencies depart. Under the effect of noise, the two states that characterize the birhythmic system can merge, inasmuch as the parameter plane of the birhythmic solutions is found to shrink when the noise intensity increases. The solution of the Fokker-Planck equation shows that in the birhythmic region, the two attractors are characterized by very different probabilities of finding the system in such a state. The probability becomes comparable only for a narrow range of the control parameters, thus the two limit cycles have properties in close analogy with the thermodynamic phases.

17.
Math Biosci ; 229(1): 50-63, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21070789

ABSTRACT

Models for the transmission of the chikungunya virus to human population are discussed. The chikungunya virus is an alpha arbovirus, first identified in 1953. It is transmitted by Aedes mosquitoes and is responsible for a little documented uncommon acute tropical disease. Models describing the mosquito population dynamics and the virus transmission to the human population are discussed. Global analysis of equilibria are given, which use on the one hand Lyapunov functions and on the other hand results of the theory of competitive systems and stability of periodic orbits.


Subject(s)
Alphavirus Infections , Disease Vectors , Models, Biological , Aedes/physiology , Aedes/virology , Algorithms , Alphavirus Infections/transmission , Animals , Chikungunya Fever , Computer Simulation , Humans , Population Dynamics
18.
Chaos ; 20(1): 013114, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20370269

ABSTRACT

We analyze the global stability properties of birhythmicity in a self-sustained system with random excitations. The model is a multi-limit-cycle variation in the van der Pol oscillator introduced to analyze enzymatic substrate reactions in brain waves. We show that the two frequencies are strongly influenced by the nonlinear coefficients alpha and beta. With a random excitation, such as a Gaussian white noise, the attractor's global stability is measured by the mean escape time tau from one limit cycle. An effective activation energy barrier is obtained by the slope of the linear part of the variation in the escape time tau versus the inverse noise intensity 1/D. We find that the trapping barriers of the two frequencies can be very different, thus leaving the system on the same attractor for an overwhelming time. However, we also find that the system is nearly symmetric in a narrow range of the parameters.


Subject(s)
Biophysics/methods , Nonlinear Dynamics , Proteins/chemistry , Algorithms , Animals , Circadian Rhythm , Humans , Kinetics , Models, Neurological , Models, Statistical , Models, Theoretical , Nerve Net , Normal Distribution , Oscillometry/methods
19.
Neurochem Res ; 26(12): 1271-5, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11885777

ABSTRACT

Regional differences in presynaptic [3H]dopamine ([3H]DA) release and its modulation by D2 DA-receptors between the frontal cortex and striatum obtained from Wystar-Kyoto (WKY) and spontaneous-hypertensive rats (SHR) have been evaluated using superfused synaptosomes. Synaptosomal tritium content was significantly lower in the frontal cortex than in the striatum in both SHR and WKY (approximately 45% and 48%, respectively), but no differences in tritium content were obtained between strains. However, the 15 mM K+-evoked [3H]DA overflow was lower in the SHR as compared to WKY rats in both brain regions (striatum approximately 23%, frontal cortex approximately 21). Concentration-response curves for quinpirole (1nM-10 microM)-mediated inhibition of 15mM K+-evoked [3H]DA release showed no differences between SHR and WKY. These results suggest that SHR has less ability to release [3H]DA as compared to WKY rats, but SHR did not show differences in the autoregulation of such release in both the frontal cortex and striatum.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Frontal Lobe/metabolism , Hypertension/metabolism , Potassium/pharmacology , Presynaptic Terminals/physiology , Synaptosomes/metabolism , Animals , Corpus Striatum/drug effects , Dopamine Agonists/pharmacology , Frontal Lobe/drug effects , Male , Quinpirole/pharmacology , Rats , Rats, Inbred SHR/metabolism , Rats, Inbred WKY , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/physiology , Reference Values , Synaptosomes/drug effects , Tritium
SELECTION OF CITATIONS
SEARCH DETAIL
...