Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 7(7): 3030-3042, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34185991

ABSTRACT

The lymphatic system is essential in maintaining tissue fluid homeostasis as well as antigen and immune cell transport to lymph nodes. Moreover, lymphatic vasculature plays an important role in various pathological processes, such as cancer. Fundamental to this research field are representative in vitro models. Here we present a microfluidic lymphatic vessel model to study lymphangiogenesis and its interaction with colon cancer organoids using a newly developed lymphatic endothelial cell (LEC) line. We generated immortalized human LECs by lentiviral transduction of human telomerase (hTERT) and BMI-1 expression cassettes into primary LECs. Immortalized LECs showed an increased growth potential, reduced senescence, and elongated lifespan with maintenance of typical LEC morphology and marker expression for over 12 months while remaining nontransformed. Immortalized LECs were introduced in a microfluidic chip, comprising a free-standing extracellular matrix, where they formed a perfusable vessel-like structure against the extracellular matrix. A gradient of lymphangiogenic factors over the extracellular matrix gel induced the formation of luminated sprouts. Adding mouse colon cancer organoids adjacent to the lymphatic vessel resulted in a stable long-lived coculture model in which cancer cell-induced lymphangiogenesis and cancer cell motility can be investigated. Thus, the development of a stable immortalized lymphatic endothelial cell line in a membrane-free, perfused microfluidic chip yields a highly standardized lymphangiogenesis and lymphatic vessel-tumor cell coculture assay.


Subject(s)
Endothelial Cells , Lymphatic Vessels , Biology , Coculture Techniques , Humans , Microfluidics
2.
Redox Biol ; 29: 101396, 2020 01.
Article in English | MEDLINE | ID: mdl-31926622

ABSTRACT

PGC-1α controls, to a large extent, the capacity of cells to respond to changing nutritional requirements and energetic demands. The key role of metabolic reprogramming in tumor development has highlighted the potential role of PGC-1α in cancer. To investigate how loss of PGC-1α activity in primary cells impacts the oncogenic characteristics of spontaneously immortalized cells, and the mechanisms involved, we used the classic 3T3 protocol to generate spontaneously immortalized mouse embryonic fibroblasts (iMEFs) from wild-type (WT) and PGC-1α knockout (KO) mice and analyzed their oncogenic potential in vivo and in vitro. We found that PGC-1α KO iMEFs formed larger and more proliferative primary tumors than WT counterparts, and fostered the formation of lung metastasis by B16 melanoma cells. These characteristics were associated with the reduced capacity of KO iMEFs to respond to cell contact inhibition, in addition to an increased ability to form colonies in soft agar, an enhanced migratory capacity, and a reduced growth factor dependence. The mechanistic basis of this phenotype is likely associated with the observed higher levels of nuclear ß-catenin and c-myc in KO iMEFs. Evaluation of the metabolic adaptations of the immortalized cell lines identified a decrease in oxidative metabolism and an increase in glycolytic flux in KO iMEFs, which were also more dependent on glutamine for their survival. Furthermore, glucose oxidation and tricarboxylic acid cycle forward flux were reduced in KO iMEF, resulting in the induction of compensatory anaplerotic pathways. Indeed, analysis of amino acid and lipid patterns supported the efficient use of tricarboxylic acid cycle intermediates to synthesize lipids and proteins to support elevated cell growth rates. All these characteristics have been observed in aggressive tumors and support a tumor suppressor role for PGC-1α, restraining metabolic adaptations in cancer.


Subject(s)
Adaptation, Physiological , Fibroblasts , Animals , Fibroblasts/metabolism , Mice , Mice, Knockout , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...