Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
J Med Virol ; 95(8): e29015, 2023 08.
Article in English | MEDLINE | ID: mdl-37539979

ABSTRACT

It has been proposed that infection by adipogenic viruses constitutes a "low risk" factor for obesity. Here, we report the presence of adenovirus 36 (Ad36) and its viral load copy number in fat tissue of participants with obesity and normal weight; phylogenetic analysis was performed to describe their relationship and genetic variability among viral haplotypes. Adipose tissue obtained from 105 adult patients with obesity (cases) and 26 normal-weight adult participants as controls were analyzed by quantitative polymerase chain reaction (qPCR) amplifying the partial Ad36 E1a gene. The amplicons were examined by melting curves and submitted to sequencing. Then, genetic diversity and phylogenetic inferences were performed. Ad36 was identified at rates of 82% and 46% in the case and control groups, respectively (p = 1.1 × 10-4 , odds ratio = 5.28); viral load copies were also significantly different between both groups, being 25% higher in the case group. Melting curve analysis showed clear amplification among positive samples. Phylogenetic inferences and genetic diversity analyses showed that the Ad36 E1a gene exhibits low genetic variability and differentiation with strong gene flow due to an expanding process. Our results suggest that the phenomenon of infectobesity by Ad36 might not be a low-risk factor, as has been previously argued by other authors.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Adult , Humans , Adenoviruses, Human/genetics , Intra-Abdominal Fat , Phylogeny , Viral Load , Adenoviridae/genetics , Obesity/genetics
2.
Article in English | MEDLINE | ID: mdl-36383890

ABSTRACT

Human Adenovirus 36 (HAdV-36) has been related to diverse effects on metabolism and may attenuate the lipid accumulation in kidneys with increased adiposity. Some of these effects would be related to viral persistence. However, until now, a model of persistent in vitro infection by HAdV-36 is unknown. In this study, we examined the cells of the Vero lineage to explore their permissiveness to long-term HAdV-36 infection. HAdV-36 was productively replicated in Vero cells and maintained long-term infection for up to 35 cell passages. A subculture was obtained from the cells that survived the primary infection at a low MOI (0.5). The production of the extracellular infectious virus with titers ranging from 104 to 106 TCID50/mL and DNA-bearing cells was detected. In long-term infected cells, the intracellular distribution of viral antigen was demonstrated by performing immunolocalization (IFI) and expression of cell-viral antigen in 50% of cells by flow cytometry, using anti-HAdV-36 hyperimmune rabbit serum. Furthermore, E1a and E4orf1 genes in long-term infected passages showed a decreasing trend. Our preliminary results reveal that renal epithelial monkey cells are permissive for the productive infection of HAdV-36. Vero cell culture long-term infection might be a promising model for addressing the fundamental aspects of the HAdV-36 biology that cannot reveal broadly-used cultures, which do not maintain long-term infection in primary or transformed cells.


Subject(s)
Adenoviruses, Human , Animals , Chlorocebus aethiops , Humans , Rabbits , Adenoviruses, Human/genetics , Haplorhini , Vero Cells , Virus Replication , Kidney , Antigens, Viral
3.
Article in English | LILACS-Express | LILACS | ID: biblio-1406878

ABSTRACT

ABSTRACT Human Adenovirus 36 (HAdV-36) has been related to diverse effects on metabolism and may attenuate the lipid accumulation in kidneys with increased adiposity. Some of these effects would be related to viral persistence. However, until now, a model of persistent in vitro infection by HAdV-36 is unknown. In this study, we examined the cells of the Vero lineage to explore their permissiveness to long-term HAdV-36 infection. HAdV-36 was productively replicated in Vero cells and maintained long-term infection for up to 35 cell passages. A subculture was obtained from the cells that survived the primary infection at a low MOI (0.5). The production of the extracellular infectious virus with titers ranging from 104 to 106 TCID50/mL and DNA-bearing cells was detected. In long-term infected cells, the intracellular distribution of viral antigen was demonstrated by performing immunolocalization (IFI) and expression of cell-viral antigen in 50% of cells by flow cytometry, using anti-HAdV-36 hyperimmune rabbit serum. Furthermore, E1a and E4orf1 genes in long-term infected passages showed a decreasing trend. Our preliminary results reveal that renal epithelial monkey cells are permissive for the productive infection of HAdV-36. Vero cell culture long-term infection might be a promising model for addressing the fundamental aspects of the HAdV-36 biology that cannot reveal broadly-used cultures, which do not maintain long-term infection in primary or transformed cells.

4.
Parasit Vectors ; 11(1): 564, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30373630

ABSTRACT

BACKGROUND: Blastocystis spp. are the most prevalent intestinal eukaryotes identified in humans, with at least 17 genetic subtypes (ST) based on genes coding for the small-subunit ribosomal RNA (18S). It has been argued that the 18S gene should not be the marker of choice to discriminate between STs of these strains because this marker exhibits high intra-genomic polymorphism. By contrast, pyruvate:ferredoxin oxidoreductase (PFOR) is a relevant enzyme involved in the core energy metabolism of many anaerobic microorganisms such as Blastocystis, which, in other protozoa, shows more polymorphisms than the 18S gene and thus may offer finer discrimination when trying to identify Blastocystis ST. Therefore, the objective of the present study was to assess the suitability of the PFOR gene as an additional marker to discriminate among Blastocystis strains or subtypes from symptomatic carrier children. METHODS: Faecal samples from 192 children with gastrointestinal symptoms from the State of Mexico were submitted for coprological study. Twenty-one of these samples were positive only for Blastocystis spp.; these samples were analysed by PCR sequencing of regions of the 18S and PFOR genes. The amplicons were purified and sequenced; afterwards, both markers were assessed for genetic diversity. RESULTS: The 18S analysis showed the following frequencies of Blastocystis subtypes: ST3 = 43%; ST1 = 38%; ST2 = 14%; and ST7 = 5%. Additionally, using subtype-specific primer sets, two samples showed mixed Blastocystis ST1 and ST2 infection. For PFOR, Bayesian inference revealed the presence of three clades (I-III); two of them grouped different ST samples, and one grouped six samples of ST3 (III). Nucleotide diversity (π) and haplotype polymorphism (θ) for the 18S analysis were similar for ST1 and ST2 (π = ~0.025 and θ = ~0.036); remarkably, ST3 showed almost 10-fold lower values. For PFOR, a similar trend was found: clade I and II had π = ~0.05 and θ = ~0.05, whereas for clade III, the values were almost 6-fold lower. CONCLUSIONS: Although the fragment of the PFOR gene analysed in the present study did not allow discrimination between Blastocystis STs, this marker grouped the samples in three clades with strengthened support, suggesting that PFOR may be under different selective pressures and evolutionary histories than the 18S gene. Interestingly, the ST3 sequences showed lower variability with probable purifying selection in both markers, meaning that evolutionary forces drive differential processes among Blastocystis STs.


Subject(s)
Blastocystis Infections/parasitology , Blastocystis/classification , Genetic Variation , Intestinal Diseases, Parasitic/parasitology , Pyruvate Synthase/genetics , Adolescent , Bayes Theorem , Blastocystis/enzymology , Blastocystis/genetics , Child , Child, Preschool , Feces/parasitology , Female , Haplotypes , Humans , Infant , Male , Mexico , Phylogeny , Polymorphism, Genetic , Protozoan Proteins/genetics
5.
Iran J Parasitol ; 12(4): 470-481, 2017.
Article in English | MEDLINE | ID: mdl-29317871

ABSTRACT

BACKGROUND: Drugs' pharmacokinetics and pharmacodynamics can be affected by diverse genetic variations, within which simple nucleotide polymorphisms (SNPs) are the most common. Genetic variability is one of the factors that could explain questions like why a given drug does not have the desired effect or why do adverse drug reactions arise. METHODS: In this retrospective observational study, literature search limits were set within PubMed database as well as the epidemiological bulletins published by the Mexican Ministry of Health, from Jan 1st 2001 to Mar 31st 2017 (16 years). RESULTS: Metabolism of antiparasitic drugs and their interindividual responses are mainly modified by variations in cytochrome P450 enzymes. These enzymes show high frequencies of polymorphic variability thus affecting the expression of CYP2C, CYP2A, CYP2A6, CYP2D6, CYP2E6 and CYP2A6 isoforms. Research in this field opens the door to new personalized treatment approaches in medicine. CONCLUSION: Clinical and pharmacological utility yield by applying pharmacogenetics to antiparasitic treatments is not intended as a mean to improve the prescription process, but to select or exclude patients that could present adverse drug reactions as well as to evaluate genetic alterations which result in a diversity of responses, ultimately seeking to provide a more effective and safe treatment; therefore choosing a proper dose for the appropriate patient and the optimal treatment duration. Furthermore, pharmacogenetics assists in the development of vaccines. In other words, the aim of this discipline is to find therapeutic targets allowing personalized treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...