Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894499

ABSTRACT

Significant advancements have been made in the development of CO2 reduction processes for applications such as electrosynthesis, energy storage, and environmental remediation. Several materials have demonstrated great potential in achieving high activity and selectivity for the desired reduction products. Nevertheless, these advancements have primarily been limited to small-scale laboratory settings, and the considerable technical obstacles associated with large-scale CO2 reduction have not received sufficient attention. Many of the researchers have been faced with persistent challenges in the catalytic process, primarily stemming from the low Faraday efficiency, high overpotential, and low limiting current density observed in the production of the desired target product. The highlighted materials possess the capability to transform CO2 into various oxygenates, including ethanol, methanol, and formates, as well as hydrocarbons such as methane and ethane. A comprehensive summary of the recent research progress on these discussed types of electrocatalysts is provided, highlighting the detailed examination of their electrocatalytic activity enhancement strategies. This serves as a valuable reference for the development of highly efficient electrocatalysts with different orientations. This review encompasses the latest developments in catalyst materials and cell designs, presenting the leading materials utilized for the conversion of CO2 into various valuable products. Corresponding designs of cells and reactors are also included to provide a comprehensive overview of the advancements in this field.

2.
Nanomaterials (Basel) ; 13(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446527

ABSTRACT

Water electrolysis is an important alternative technology for large-scale hydrogen production to facilitate the development of green energy technology. As such, many efforts have been devoted over the past three decades to producing novel electrocatalysis with strong electrochemical (EC) performance using inexpensive electrocatalysts. Transition metal oxyhydroxide (OxH)-based electrocatalysts have received substantial interest, and prominent results have been achieved for the hydrogen evolution reaction (HER) under alkaline conditions. Herein, the extensive research focusing on the discussion of OxH-based electrocatalysts is comprehensively highlighted. The general forms of the water-splitting mechanism are described to provide a profound understanding of the mechanism, and their scaling relation activities for OxH electrode materials are given. This paper summarizes the current developments on the EC performance of transition metal OxHs, rare metal OxHs, polymers, and MXene-supported OxH-based electrocatalysts. Additionally, an outline of the suggested HER, OER, and water-splitting processes on transition metal OxH-based electrocatalysts, their primary applications, existing problems, and their EC performance prospects are discussed. Furthermore, this review article discusses the production of energy sources from the proton and electron transfer processes. The highlighted electrocatalysts have received substantial interest to boost the synergetic electrochemical effects to improve the economy of the use of hydrogen, which is one of best ways to fulfill the global energy requirements and address environmental crises. This article also provides useful information regarding the development of OxH electrodes with a hierarchical nanostructure for the water-splitting reaction. Finally, the challenges with the reaction and perspectives for the future development of OxH are elaborated.

SELECTION OF CITATIONS
SEARCH DETAIL
...