Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 58(19): 12809-12814, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31496236

ABSTRACT

Ozone oxidation has allowed the stabilization of a very high iron oxidation state in the FeSr2YCu2O7.85 cuprate, in which a long-range magnetic ordering of the high valent iron cations coexists with the superconducting interactions (magnetic ordering temperature TN = 110 K > superconducting critical temperature Tc = 70 K). The somewhat unexpected A-type AFM structure, with a µ(Fe) ∼ 2 µB magnetic saturation moment associated with the hypervalent iron sublattice, suggests an unusual low spin state for the iron cations, while the low dimensionality of the magnetic structure results in a soft switching toward ferromagnetism under small external magnetic fields. The role of the crystal structure and of the high charge concentration in the stabilization of this unusual electronic configuration for the iron cations is discussed.

2.
Inorg Chem ; 54(23): 11200-8, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26574913

ABSTRACT

Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).

3.
Inorg Chem ; 54(3): 832-6, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25275711

ABSTRACT

The BiCr(0.5)Ni(0.5)O(3) perovskite has been obtained at high pressure. Neutron and synchrotron diffraction data show a Pnma orthorhombic structure with a = 5.5947(1) Å, b = 7.7613(1) Å, and c = 5.3882(1) Å at 300 K and random B-site Cr/Ni distribution. Electron diffraction reveals an incommensurate modulation parallel to the b axis. The combination of either Cr-O-Ni (J > 0) or Cr-O-Cr/Ni-O-Ni (J < 0) nearest-neighbor spin interactions results in a random-bond spin-glass configuration. Magnetization, neutron diffraction, and muon-spin-relaxation measurements demonstrate that variations in the local bonding and charge states contribute to the magnetic frustration.

4.
Dalton Trans ; 43(3): 1117-24, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24169530

ABSTRACT

The ordered double perovskite Pb2NiReO6 has been prepared at 6 GPa and temperatures ranging from 1273 to 1373 K. Its crystal structure determined by X-ray powder diffraction and selected area electron diffraction shows monoclinic symmetry with centrosymmetric space group I2/m (a = 5.6021(1) Å, b = 5.6235(1) Å, c = 7.9286(1) Å and ß = 90.284°(1)). High angle annular dark field microscopy studies reveal the existence of compositional microdomains. The compound displays a re-entrant spin-glass transition from a ferrimagnetic ordering below T(N) ~ 37 K between the Re(+5) and Ni(+3) (high spin configuration) magnetic sublattices to a spin-glass configuration. Magnetic field dependent magnetization measurements revealed wasp-waisted hysteresis loops at 5 K. These shaped features originate from the antiferromagnetic/ferromagnetic (AFM/FM) competing interactions.

5.
Inorg Chem ; 50(15): 7136-41, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21699225

ABSTRACT

Structural properties and the influence of d electrons' insertion in PbTiO(3) have been determined in the study of PbM(1-x)M(x)'O(3) (M, M' = Ti, Cr, and V) solid solutions by means of X-ray diffraction, high-resolution transmission electron microscopy, magnetization measurements, and strain mapping analysis. PbTi(1-x)V(x)O(3) is the only system that preserves the same space group (P4mm) for all x, whereas PbTi(1-x)Cr(x)O(3) and PbV(1-x)Cr(x)O(3) change to cubic (Pm ̅3m) at x = 0.30 and 0.4, respectively. These values have been related with the percolation threshold for a cubic net (P(c) = 0.31). The microscopy study coincides with the X-ray diffraction determination, and neither supercell nor short-range order maxima are observed. However, for x ≥ 0.7 in PbTi(1-x)Cr(x)O(3) the presence of modulated zones is observed in both the electron diffraction pattern as well as high-resolution transmission electron micrographs, as is typical for PbCrO(3). (1) Furthermore, the tetragonal region in PbV(1-x)Cr(x)O(3) suffers a great stress because of the contrast of [Cr-O(6)] octahedra and [V-O(5)] square-based pyramids end members basic units.

6.
Inorg Chem ; 49(6): 2827-33, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20155927

ABSTRACT

The CdCr(2)O(4) spinel transforms to a 10.6% denser new polymorph of the CaFe(2)O(4)-type structure at 10 GPa and 1100 degrees C. This new polymorph has a honeycomb-like structure because of double rutile-type chains formed by [Cr-O(6)] edge-shared octehedra. This crystal structure is prone to be magnetically frustrated and presents low-dimensional antiferromagnetism at 25 K < T < 150 K, accompanied by more complex interactions as the temperature decreases. These transitions are evidenced by magnetic susceptibility and heat capacity measurements. We also discuss a possible structural mechanism for the transformation.

7.
Inorg Chem ; 48(24): 11843-6, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-19928981

ABSTRACT

We show that an appropriate analysis of the electron energy loss spectra in relation to the Cr-O bonds gives a reliable methodology to obtain the oxidation state in chromium oxides. It is based on the energy difference between the Cr L(3) and O K edges, which acts as a measure of the binding energy difference between the Cr 2p(3/2) and O 1s core levels.

8.
Inorg Chem ; 48(12): 5434-8, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19422196

ABSTRACT

The perovskite "PbCrO(3)" was synthesized at high pressure and high temperature. Its magnetic properties have been investigated by means of magnetization, specific heat, and resistivity measurements. Earlier workers had concluded it to have a G-type antiferromagnetic structure. However, our measurements suggest a rather more complex situation: first, a weak ferromagnetic transition of the Cr(IV) spins occurs at 245 K; this is followed by a temperature-driven spin reorientation starting at 185 K and ending at 62 K. Since zero-magnetic-field spin reorientation in the "PbCrO(3)" perovskite should not be expected, an intrinsic "magnetoelectric effect", associated with the lone-pair Pb electrons, seems to be responsible for the observed smooth rotation of the Cr-spins.

9.
Chemistry ; 13(19): 5607-16, 2007.
Article in English | MEDLINE | ID: mdl-17415741

ABSTRACT

The crystal structures of several oxides of the La(2/3)Li(x)Ti(1-x)Al(x)O(3) system have been studied by selected-area electron diffraction, high-resolution transmission electron microscopy, and powder neutron diffraction, and their lithium conductivity has been by complex impedance spectroscopy. The compounds have a perovskite-related structure with a unit cell radical2 a(p)x2 a(p)x radical2 a(p) (a(p)=perovskite lattice parameter) due to the tilting of the (Ti/Al)O(6) octahedra and the ordering of lanthanum and lithium ions and vacancies along the 2 a(p) axis. The Li(+) ions present a distorted square-planar coordination and are located in interstitial positions of the structure, which could explain the very high ionic conductivity of this type of material. The lithium conductivity depends on the oxide composition and its crystal microstructure, which varies with the thermal treatment of the sample. The microstructure of these titanates is complex due to formation of domains of ordering and other defects such as strains and compositional fluctuations.


Subject(s)
Aluminum Oxide/chemistry , Lanthanoid Series Elements/chemistry , Lithium Compounds/chemistry , Titanium/chemistry , Crystallization , Microscopy, Electron, Transmission , Oxides/chemistry , Structure-Activity Relationship , X-Ray Diffraction
10.
Inorg Chem ; 44(9): 3063-9, 2005 May 02.
Article in English | MEDLINE | ID: mdl-15847410

ABSTRACT

Eleven new oxides, derived from yttrium barium copper oxide by replacing the square-planar copper [Cu-O4] of the basal plane of the triple perovskite-based structure with octahedral Cr(IV), have been prepared at high pressure and temperature. Their crystal structures have been determined, and their complex microstructure has been established by means of high-resolution electron microscopy and electron diffraction. The materials have a general formula of CrSr2RECu2O8 (RE = La, Pr, Nd, Eu, Gd, Tb, Dy, Y, Ho, Er, and Lu); they are tetragonal, show the symmetry of space group P4/mmm, and do not appear to be superconducting.

11.
J Am Chem Soc ; 126(11): 3587-96, 2004 Mar 24.
Article in English | MEDLINE | ID: mdl-15025488

ABSTRACT

Three representative oxides of the La(2/3)(-)(x)()Li(3)(x)()TiO(3) system have been studied by selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), and powder synchrotron X-ray diffraction. HRTEM showed that the materials have a complex microstructure. The SAED and HRTEM results have allowed us to propose a model to refine the crystal structure of these oxides that also accounts for their microstructure. The materials have a perovskite-related structure with a diagonal unit cell ( radical 2a(p) x radical 2a(p) x 2a(p)) as a consequence of the tilting of the TiO(6) octahedra. Ordering of lanthanum and lithium ions and vacancies along the 2a(p)-axis, as well as displacements of titanium ions from the center of the octahedra, have been determined. The size and shape of the domains have been obtained from the synchrotron X-ray diffraction data; in addition, other extended defects such as strains and compositional fluctuations have been detected.

SELECTION OF CITATIONS
SEARCH DETAIL
...