Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10382, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710728

ABSTRACT

In recent years, the proliferation of Massive Open Online Courses (MOOC) platforms on a global scale has been remarkable. Learners can now meet their learning demands with the help of MOOC. However, learners might not understand the course material well if they have access to a lot of information due to their inadequate expertise and cognitive ability. Personalized Recommender Systems (RSs), a cutting-edge technology, can assist in addressing this issue. It greatly increases resource acquisition through personalized availability for various people of all ages. Intelligent learning methods, such as machine learning and Reinforcement Learning (RL) can be used in RS challenges. However, machine learning needs supervised data and classical RL is not suitable for multi-task recommendations in online learning platforms. To address these challenges, the proposed framework integrates a Deep Reinforcement Learning (DRL) and multi-agent approach. This adaptive system personalizes the learning experience by considering key factors such as learner sentiments, learning style, preferences, competency, and adaptive difficulty levels. We formulate the interactive RS problem using a DRL-based Actor-Critic model named DRR, treating recommendations as a sequential decision-making process. The DRR enables the system to provide top-N course recommendations and personalized learning paths, enriching the student's experience. Extensive experiments on a MOOC dataset such as the 100 K Coursera course review validate the proposed DRR model, demonstrating its superiority over baseline models in major evaluation metrics for long-term recommendations. The outcomes of this research contribute to the field of e-learning technology, guiding the design and implementation of course RSs, to facilitate personalized and relevant recommendations for online learning students.


Subject(s)
Education, Distance , Humans , Education, Distance/methods , Learning , Machine Learning
2.
Healthc Technol Lett ; 10(4): 87-98, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529409

ABSTRACT

Recently, medical technologies have developed, and the diagnosis of diseases through medical images has become very important. Medical images often pass through the branches of the network from one end to the other. Hence, high-level security is required. Problems arise due to unauthorized use of data in the image. One of the methods used to secure data in the image is encryption, which is one of the most effective techniques in this field. Confusion and diffusion are the two main steps addressed here. The contribution here is the adaptation of the deep neural network by the weight that has the highest impact on the output, whether it is an intermediate output or a semi-final output in additional to a chaotic system that is not detectable using deep neural network algorithm. The colour and grayscale images were used in the proposed method by dividing the images according to the Region of Interest by the deep neural network algorithm. The algorithm was then used to generate random numbers to randomly create a chaotic system based on the replacement of columns and rows, and randomly distribute the pixels on the designated area. The proposed algorithm evaluated in several ways, and compared with the existing methods to prove the worth of the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL
...