Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 340: 127904, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-32890856

ABSTRACT

The present study aims at developing an analytical methodology which allows correlating sensory poles of chocolate to their chemical characteristics and, eventually, to those of the cocoa beans used for its preparation. Trained panelists investigated several samples of chocolate, and they divided them into four sensorial poles (characterized by 36 different descriptors) attributable to chocolate flavor. The same samples were analyzed by six different techniques: Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), Solid Phase Micro Extraction-Gas Chromatography-Mass Spectroscopy (SPME-GC-MS), High-Performance Liquid Chromatography (HPLC) (for the quantification of eight organic acids), Ultra High Performance Liquid Chromatography coupled to triple-quadrupole Mass Spectrometry (UHPLC-QqQ-MS) for polyphenol quantification, 3D front face fluorescence Spectroscopy and Near Infrared Spectroscopy (NIRS). A multi-block classification approach (Sequential and Orthogonalized-Partial Least Squares - SO-PLS) has been used, in order to exploit the chemical information to predict the sensorial poles of samples. Among thirty-one test samples, only two were misclassified.


Subject(s)
Cacao/chemistry , Chocolate/analysis , Chocolate/classification , Food Analysis/methods , Chromatography, High Pressure Liquid , Food Analysis/statistics & numerical data , Gas Chromatography-Mass Spectrometry/methods , Humans , Least-Squares Analysis , Mass Spectrometry/methods , Polyphenols/analysis , Solid Phase Microextraction , Spectrometry, Fluorescence , Spectroscopy, Near-Infrared , Taste
2.
Anal Chim Acta ; 906: 98-109, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26772129

ABSTRACT

The soil redox potential (Eh) can provide essential information to characterise soil conditions. In practice, however, numerous problems may arise regarding: (i) Eh determination in soils, especially aerobic soils, e.g. variations in the instrumentation and methodology for Eh measurement, high spatial and temporal Eh variability in soils, irreversibility of the redox reaction at the surface electrode, chemical disequilibrium; and (ii) measurement interpretation. This study aimed at developing a standardised method for redox potential measurement in soils, in order to use Eh as a soil quality indicator. This paper presents practical improvements in soil Eh measurement, especially regarding the control of electromagnetic perturbations, electrode choice and preparation, soil sample preparation (drying procedure) and soil:water extraction rate. The repeatability and reproducibility of the measurement method developed are highlighted. The use of Eh corrected at pH7, pe+pH or rH2, which are equivalent notions, is proposed to facilitate interpretation of the results. The application of this Eh measurement method allows characterisation of soil conditions with sufficient repeatability, reproducibility and accuracy to demonstrate that conservation agriculture systems positively alter the protonic and electronic balance of soil as compared to conventional systems.


Subject(s)
Crops, Agricultural , Soil/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...