Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37509470

ABSTRACT

Monkeypox virus has remained the most virulent poxvirus since the elimination of smallpox approximately 41 years ago, with distribution mostly in Central and West Africa. Monkeypox (Mpox) in humans is a zoonotically transferred disease that results in a smallpox-like disease. It was first diagnosed in 1970 in the Democratic Republic of the Congo (DRC), and the disease has spread over West and Central Africa. The purpose of this review was to give an up-to-date, thorough, and timely overview on the genomic diversity and evolution of a re-emerging infectious disease. The genetic profile of Mpox may also be helpful in targeting new therapeutic options based on genes, mutations, and phylogeny. Mpox has become a major threat to global health security, necessitating a quick response by virologists, veterinarians, public health professionals, doctors, and researchers to create high-efficiency diagnostic tests, vaccinations, antivirals, and other infection control techniques. The emergence of epidemics outside of Africa emphasizes the disease's global significance. Increased monitoring and identification of Mpox cases are critical tools for obtaining a better knowledge of the ever-changing epidemiology of this disease.

2.
Vaccines (Basel) ; 10(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36016242

ABSTRACT

Countries worldwide have deployed mass COVID-19 vaccination drives, but there are people who are hesitant to receive the vaccine. Studies assessing the factors associated with COVID-19 vaccination hesitancy are inconclusive. This study aimed to assess the global prevalence of COVID-19 vaccination hesitancy and determine the potential factors associated with such hesitancy. We performed an organized search for relevant articles in PubMed, Scopus, and Web of Science. Extraction of the required information was performed for each study. A single-arm meta-analysis was performed to determine the global prevalence of COVID-19 vaccination hesitancy; the potential factors related to vaccine hesitancy were analyzed using a Z-test. A total of 56 articles were included in our analysis. We found that the global prevalence of COVID-19 vaccination hesitancy was 25%. Being a woman, being a 50-year-old or younger, being single, being unemployed, living in a household with five or more individuals, having an educational attainment lower than an undergraduate degree, having a non-healthcare-related job and considering COVID-19 vaccines to be unsafe were associated with a higher risk of vaccination hesitancy. In contrast, living with children at home, maintaining physical distancing norms, having ever tested for COVID-19, and having a history of influenza vaccination in the past few years were associated with a lower risk of hesitancy to COVID-19 vaccination. Our study provides valuable information on COVID-19 vaccination hesitancy, and we recommend special interventions in the sub-populations with increased risk to reduce COVID-19 vaccine hesitancy.

3.
Anal Bioanal Chem ; 410(4): 1217-1230, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28940009

ABSTRACT

Foodborne pathogens are a burden to the economy and a constant threat to public health. The ability to rapidly detect the presence of foodborne pathogens is a vital component of any strategy towards establishing a safe and secure food supply chain. Bacteriophages (phages) are viruses capable of infecting and replicating within bacteria in a strain-specific manner. The ubiquitous and selective nature of phages makes them ideal for the detection and biocontrol of bacteria. Therefore, the objective of this research was to develop and test a phage-based paper dipstick biosensor for the detection of various foodborne pathogens in food matrices. The first step was to identify the best method for immobilizing phages on paper such that their biological activity (infectivity) was preserved. It was found that piezoelectric inkjet printing resulted in lower loss of phage infectivity when compared with other printing methods (namely gravure and blade coating) and that ColorLok paper was ideally suited to create functional sensors. The phage-based bioactive papers developed with use of piezoelectric inkjet printing actively lysed their target bacteria and retained this antibacterial activity for up to 1 week when stored at room temperature and 80% relative humidity. These bioactive paper strips in combination with quantitative real-time PCR were used for quantitative determination of target bacteria in broth and food matrices. A phage dipstick was used to capture and infect Escherichia coli O157:H7, E. coli O45:H2, and Salmonella Newport in spinach, ground beef and chicken homogenates, respectively, and quantitative real-time PCR was used to detect the progeny phages. A detection limit of 10-50 colony-forming units per millilitre was demonstrated with a total assay time of 8 h, which was the duration of a typical work shift in an industrial setting. This detection method is rapid and cost-effective, and may potentially be applied to a broad range of bacterial foodborne pathogens. Graphical abstract ᅟ.


Subject(s)
Coliphages , Food Microbiology , Biosensing Techniques , Colony Count, Microbial , Culture Media , Escherichia coli O157/isolation & purification , Escherichia coli O157/pathogenicity , Limit of Detection , Paper
SELECTION OF CITATIONS
SEARCH DETAIL
...