Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36613124

ABSTRACT

Heavy metals pollution of water resources is an emerging concern worldwide and seeks immediate attention. Date palm waste was transformed into biochar (BC), which was further modified through Fe-intercalation for the production of magnetic biochar (Fe-BC) in this study. The produced BC and Fe-BC were analyzed for chemical, proximate, surface, and elemental composition. The efficiency of the produced adsorbents to decontaminate the water from Cd2+ and Pb2+ ions was investigated through kinetics and an isotherm adsorption batch trial. Kinetics adsorption data fit well with the pseudo-second order and power function model, while equilibrium data were described well with the Langmuir and Freundlich isotherms. The maximum adsorption capacity as shown by the Langmuir model was the highest for Fe-BC for both Cd2+ (48.44 mg g-1) and Pb2+ (475.14 mg g-1), compared with that of BC (26.78 mg g-1 Cd2+ and 160.07 mg g-1 Pb2+). Both materials showed higher removal of Pb (36.34% and 99.90% on BC and Fe-BC, respectively) as compared with Cd (5.23% and 12.28% on BC and Fe-BC, respectively) from a binary solution. Overall, Fe-BC was more efficient in adsorbing both of the studied metals from contaminated water. The application of Fe-BC resulted in 89% higher adsorption of Cd2+ and 197% higher adsorption of Pb2+ from aqueous media as compared to BC. Kinetics and isotherm models as well as SEM-EDS analysis of the post-adsorption adsorbents suggested multiple adsorption mechanisms including chemisorption, pore-diffusion, and electrostatic interactions.


Subject(s)
Phoeniceae , Water Pollutants, Chemical , Cadmium/analysis , Lead , Charcoal/chemistry , Water , Adsorption , Water Pollutants, Chemical/analysis , Kinetics
2.
J Environ Qual ; 50(5): 1220-1232, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34273114

ABSTRACT

Military activities can contaminate productive land with potentially toxic substances. The most common trace metal contaminant on military bases is lead (Pb). A field experiment was begun in 2016 at Fort Riley, KS, in an area with total soil Pb concentrations ranging from 900 to 1,500 mg kg-1 and near-neutral pH. The main objectives were to test the potential of Miscanthus sp. for phytostabilization of the site and to evaluate the effects of soil amendments on Miscanthus growth, soil-plant Pb transfer, bioaccessibility of soil Pb, and soil health. The experimental design was a randomized complete block, with five treatments and four replications. Treatments were (a) existing vegetation; (b) Miscanthus planted in untilled soil, no amendments; (c) Miscanthus planted in tilled soil; (d) Miscanthus planted in tilled soil amended with inorganic P (triple superphosphate applied at 5:3 Pb:P); and (e) Miscanthus planted in tilled soil amended with organic P (Class B biosolids applied at 45 Mg ha-1 ). Tilling and soil amendments increased dry matter yields only in the establishment year. Total Pb uptake, plant tissue Pb concentration, and soil Pb bioaccessibility were significantly less in the Miscanthus plots amended with biosolids than the Miscanthus plots with no added P across all 3 yr. Enzyme activities, organic carbon, and microbial biomass were also greater in biosolids-treated plots. Results show that planting-time addition of soil amendments to Pb-contaminated soil supported Miscanthus establishment, stabilized and reduced bioaccessibility of soil Pb, reduced concentration and uptake of Pb by Miscanthus, and enhanced soil health parameters.


Subject(s)
Metals, Heavy , Military Personnel , Soil Pollutants , Biodegradation, Environmental , Humans , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...