Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569513

ABSTRACT

The lactoperoxidase (LPO) system shows promise in the prevention of dental caries, a common chronic disease. This system has antimicrobial properties and is part of the non-specific antimicrobial immune system. Understanding the efficacy of the LPO system in the fight against biofilms could provide information on alternative strategies for the prevention and treatment of caries. In this study, the enzymatic system was modified using four different (pseudo)halide substrates (thiocyanate, thiocyanate-iodide mixture, selenocyanate, and iodide). The study evaluated the metabolic effects of applying such modifications to Streptococcus mutans; in particular: (1) biofilm formation, (2) synthesis of insoluble polysaccharides, (3) lactate synthesis, (4) glucose and sucrose consumption, (5) intracellular NAD+ and NADH concentrations, and (6) transmembrane glucose transport efficiency (PTS activity). The results showed that the LPO-iodide system had the strongest inhibitory effect on biofilm growth and lactate synthesis (complete inhibition). This was associated with an increase in the NAD+/NADH ratio and an inhibition of glucose PTS activity. The LPO-selenocyanate system showed a moderate inhibitory effect on biofilm biomass growth and lactate synthesis. The other systems showed relatively small inhibition of lactate synthesis and glucose PTS but no effect on the growth of biofilm biomass. This study provides a basis for further research on the use of alternative substrates with the LPO system, particularly the LPO-iodide system, in the prevention and control of biofilm-related diseases.


Subject(s)
Anti-Infective Agents , Dental Caries , Humans , Streptococcus mutans , Thiocyanates/pharmacology , Lactoperoxidase/pharmacology , Lactoperoxidase/metabolism , NAD/metabolism , Iodides/metabolism , Biofilms , Anti-Infective Agents/pharmacology , Glucose/metabolism , Lactates/metabolism
2.
Biologia (Bratisl) ; : 1-16, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-37363646

ABSTRACT

Regular intake of fucosylated oligosaccharides has been associated with several benefits for human health, particularly for new-borns. Since these biologically active molecules can be found naturally in human milk, research efforts have been focused on the alternative synthetic routes leading to their production. In particular, utilization of fucosidases to perform stereoselective transglycosylation reactions has been widely investigated. Other reasons that bring these enzymes to the spotlight are their role in viral infections and cancer proliferation. Since their involvement in the pathogenesis of these diseases have been widely described, fucosidases have become a target in newly developed therapies. Finally, activity disorders of biologically important fucosidases can lead to health problems such as fucosidosis. What is common for both mechanisms is the interaction between the enzyme and substrates in and around the active site. Therefore, this review will analyse different substrate structures that have been tested in terms of their interaction with fucosidases active sites, either in synthesis or inhibition reactions. The published results will be compared from this perspective.

3.
Crit Rev Food Sci Nutr ; 62(1): 181-214, 2022.
Article in English | MEDLINE | ID: mdl-32914656

ABSTRACT

Human milk oligosaccharides (HMO) have attracted great interest in recent years due to their role in boosting infants and adults health. According to several in vitro, in vivo and clinical studies, gastrointestinal and immune physiological systems benefit the most from HMO intake. Other organ systems, such as the respiratory, central nervous, circulatory, locomotor, and urinary systems have also been found to be affected by the HMO consumption in the recent decade. Due to their positive impact on human health, the incorporation of HMO into the infant formula or other functional foods has become highly desirable. Currently, their large-scale production is limited to 2'-fucosyllactose (2'FL) and lacto-N-neotetraose (LNnT) that are obtained through fermentation and added to the infant formula as fortifiers. Fewer advances have been made for other HMO to reach the industrial scale synthesis. The present paper summarizes the latest research on HMO in terms of their health benefits and synthetic methodologies, with the overall aim to establish the current status and trends in both fields.


Subject(s)
Infant Formula , Milk, Human , Adult , Humans , Infant , Infant Formula/analysis , Oligosaccharides
4.
Appl Biochem Biotechnol ; 193(11): 3553-3569, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34312785

ABSTRACT

The effects of water activity (aw), pH, and temperature on transglycosylation activity of α-L-fucosidase from Thermotoga maritima in the synthesis of fucosylated oligosaccharides were evaluated using different water-organic cosolvent reaction systems. The optimum conditions of transglycosylation reaction were the pH range between 7 and 10 and temperature 90-95 °C. The addition of organic cosolvent decreased α-L-fucosidase transglycosylation activity in the following order: acetone > dimethyl sulfoxide (DMSO) > acetonitrile (0.51 > 0.42 > 0.18 mM/h). However, the presence of DMSO and acetone enhanced enzyme-catalyzed transglycosylation over hydrolysis as demonstrated by the obtained transglycosylation/hydrolysis rate (rT/H) values of 1.21 and 1.43, respectively. The lowest rT/H was calculated for acetonitrile (0.59), though all cosolvents tested improved the transglycosylation rate in comparison to a control assay (0.39). Overall, the study allowed the production of fucosylated oligosaccharides in water-organic cosolvent reaction media using α-L-fucosidase from T. maritima as biocatalyst.


Subject(s)
Bacterial Proteins/chemistry , Fucose/chemistry , Oligosaccharides/chemical synthesis , Thermotoga maritima/enzymology , alpha-L-Fucosidase/chemistry , Solvents/chemistry , Water/chemistry
5.
Extremophiles ; 25(3): 311-317, 2021 May.
Article in English | MEDLINE | ID: mdl-33938983

ABSTRACT

Fucosylated oligosaccharides present in human milk perform various biological functions that benefit infants' health. These compounds can be also obtained by enzymatic synthesis. In this work, the effect of the immobilization of α-L-fucosidase from Thermotoga maritima on the synthesis of fucosylated oligosaccharides was studied, using lactose and 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as acceptor and donor substrates, respectively, and Eupergit® CM as an immobilization support. The enzyme was immobilized with 90% efficiency at pH 8 and ionic strength of 1.5 M. Immobilization decreased enzyme affinity for the donor substrate as shown by a 1.5-times higher KM value and a 22-times decrease of the kcat/KM ratio in comparison to the unbound enzyme. In contrast, no effect was observed on the synthesis/hydrolysis ratio (rs/rh) when α-L-fucosidase was immobilized. Also, the effect of initial concentration of substrates was studied. An increase of the acceptor concentration improved the yields of fucosylated oligosaccharides regardless enzyme immobilization. The synthesis yields of 38.9 and 40.6% were obtained using Eupergit® CM-bound or unbound enzyme, respectively, and 3.5 mM pNP-Fuc and 146 mM lactose. In conclusion, α-L-fucosidase from Thermotoga maritima was efficiently immobilized on Eupergit® CM support without affecting the synthesis of fucosylated oligosaccharides.


Subject(s)
Thermotoga maritima , alpha-L-Fucosidase , Fucose , Oligosaccharides , Substrate Specificity , Thermotoga , Thermotoga maritima/metabolism , alpha-L-Fucosidase/metabolism
6.
J Photochem Photobiol B ; 209: 111957, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32682284

ABSTRACT

Since the high incidence of aflatoxin M1 (AFM1) in milk and dairy products poses a serious risk to human health, this work aimed to investigate the complex formation between bovine α-lactalbumin (α-La) and AFM1 using different spectroscopic methods coupled with molecular docking studies. Fluorescence spectroscopy measurements demonstrated the AFM1 addition considerably reduced the α-La fluorescence intensity through a static quenching mechanism. The results indicated on the endothermic character of the reaction, and the hydrophobic interaction played a major role in the binding between AFM1 and α-La. The binding site stoichiometric value (n = 1.32) and a binding constant of 2.12 × 103 M-1 were calculated according to the Stern-Volmer equation. The thermodynamic parameters ΔH, ΔS and ΔGb were determined at 93.58 kJ mol-1, 0.378 kJ mol-1 K-1 and -19.17 ±â€¯0.96 kJ mol-1, respectively. In addition, far-UV circular dichroism studies revealed alterations in the α-La secondary structures when the α-La-AFM1 complex was formed. An increased content of the α-helix structures (from 35 to 40%) and the ß-sheets (from 16 to 19%) were observed. Furthermore, protein-ligand docking modelling demonstrated AFM1 could bind to the hydrophobic regions of α-La protein. Overall, the gathered results confirmed the α-La-AFM1 complex formation.


Subject(s)
Aflatoxin M1/chemistry , Food Contamination/analysis , Lactalbumin/chemistry , Animals , Binding Sites , Cattle , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Milk/chemistry , Molecular Docking Simulation , Protein Structure, Secondary , Serum Albumin, Bovine/chemistry , Thermodynamics
7.
Molecules ; 24(13)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261855

ABSTRACT

Fucosyl-oligosaccharides are natural prebiotics that promote the growth of probiotics in human gut and stimulate the innate immune system. In this work, the release of α-lfucosidase by Lactobacillus rhamnosus GG, and the use of this enzyme for the synthesis of fucosyl-oligosaccharides were investigated. Since α-lfucosidase is a membrane-bound enzyme, its release from the cells was induced by addition of 4-nitrophenyl-α-l-fucopyranoside (pNP-Fuc). Enzyme activity associated with the cell was recovered at 78% of its total activity. Fucosyl-oligosaccharides where synthesized using α-l-fucosidase extract and pNP-Fuc as donor substrate, and D-lactose or D-lactulose as acceptor substrates, reaching a yield up to 25%. Fucosyllactose was obtained as a reaction product with D-lactose, and its composition was confirmed by mass spectrometry (MALDI-TOF MS). It is possible that the fucosyl-oligosaccharide synthesized in this study has biological functions similar to human milk oligosaccharides.


Subject(s)
Lacticaseibacillus rhamnosus/enzymology , Oligosaccharides/biosynthesis , alpha-L-Fucosidase/isolation & purification , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Cell Wall/enzymology , Chromatography, High Pressure Liquid , Glycosides/chemistry , Humans , Mass Spectrometry , Oligosaccharides/chemistry , Prebiotics , Substrate Specificity , alpha-L-Fucosidase/metabolism
8.
Appl Biochem Biotechnol ; 188(2): 369-380, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30467689

ABSTRACT

Glycosylhydrolases of various origins were used to produce fucose-containing disaccharides with prebiotic potential using different donor substrates and L-fucose as the acceptor substrate. Eight different disaccharides were synthesized as follows: three ß-D-galactosyl-L-fucosides with glycosidase CloneZyme Gly-001-02 using D-lactose as a donor substrate, two with a structure similar to prebiotics; one ß-D-galactosyl-L-fucose with ß-D-galactosidase from Aspergillus oryzae using D-lactose as a substrate donor; and four α-D-glucosyl-L-fucosides with α-D-glucosidase from Saccharomyces cerevisiae using D-maltose as a donor substrate. All disaccharides were purified and hydrolyzed. In all cases, an L-fucose moiety was present, and it was confirmed for ß-D-galactosyl-L-fucose by mass spectrometry. High concentrations of L-fucose as the acceptor substrate enhanced the synthesis of the oligosaccharides in all cases. The three enzymes were able to synthesize fucose-containing disaccharides when L-fucose was used as the acceptor substrate, and the highest yield was 20% using ß-D-galactosidase from Aspergillus oryzae.


Subject(s)
Disaccharides/biosynthesis , Fucose/metabolism , Glycoside Hydrolases/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Aspergillus oryzae/enzymology , Biotechnology , Disaccharides/chemistry , Fucose/chemistry , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Glycoside Hydrolases/isolation & purification , Glycosylation , Lactose/metabolism , Prebiotics , Saccharomyces cerevisiae/enzymology , Substrate Specificity , alpha-Glucosidases/isolation & purification , alpha-Glucosidases/metabolism , beta-Galactosidase/isolation & purification , beta-Galactosidase/metabolism
9.
Biotechnol Appl Biochem ; 66(2): 172-191, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30508310

ABSTRACT

Fucosylated oligosaccharides play important physiological roles in humans, including in the immune response, transduction of signals, early embryogenesis and development, growth regulation, apoptosis, pathogen adhesion, and so on. Efforts have been made to synthesize fucosylated oligosaccharides, as it is difficult to purify them from their natural sources, such as human milk, epithelial tissue, blood, and so on. Within the strategies for its in vitro synthesis, it is remarkable the employment of fucosidases, enzymes that normally cleave the fucosyl residue from the non-reducing end of fucosylated compounds, as these enzymes are also capable of synthesizing them by means of a transfucosylation reaction. This review summarizes the progress in the use of fucosidases for the synthesis of compounds that have potential for industrial and commercial applications.


Subject(s)
Fucose/chemistry , Oligosaccharides/chemical synthesis , alpha-L-Fucosidase/chemistry , Oligosaccharides/chemistry
10.
Biotechnol Rep (Amst) ; 20: e00291, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30568885

ABSTRACT

A methodology to detect peroxidase activity in Opuntia ficus indica cladodes waste extracts was performed and then used towards phenolic compounds. The extracts were able to dimerize three different molecules. Dimeric compounds were produced with yields ranging from 11% to 55%. The influence of H2O2 concentration was also tested, finding better yields when the peroxide-to-substrate ratio was 1:1. Some water-miscible solvents were used trying to increase overall yields, but no-significant positive results were found. In fact, one of them, THF, seemed to inhibit dimerization reaction. Hence, we have tested an alternative natural peroxidase source obtained from the wastes of a local highly-consumed vegetable and studied their enzymatic activity towards the preparation of biologically active, valuable compounds.

11.
Extremophiles ; 22(6): 889-894, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30088105

ABSTRACT

The influence of CaCl2 and NaCl in the hydrolytic activity and the influence of CaCl2 in the synthesis of fucosylated oligosaccharides using α-L-fucosidase from Thermotoga maritima were evaluated. The hydrolytic activity of α-L-fucosidase from Thermotoga maritima displayed a maximum increase of 67% in the presence of 0.8 M NaCl with water activity (aw) of 0.9672 and of 138% in the presence of 1.1 M CaCl2 (aw 0.9581). In addition, the hydrolytic activity was higher when using CaCl2 compared to NaCl at aw of 0.8956, 0.9581 and 0.9672. On the other hand, the effect of CaCl2 in the synthesis of fucosylated oligosaccharides using 4-nitrophenyl-fucose as donor substrate and lactose as acceptor was studied. In these reactions, the presence of 1.1 M CaCl2 favored the rate of transfucosylation, and improved the yield of synthesis duplicating and triplicating it with lactose concentrations of 58 and 146 mM, respectively. CaCl2 did not significatively affect hydrolysis rate in these reactions. The combination of the activating effect of CaCl2, the decrement in aw and lactose concentration had a synergistic effect favoring the synthesis of fucosylated oligosaccharides.


Subject(s)
Bacterial Proteins/metabolism , Oligosaccharides/biosynthesis , Thermotoga maritima/enzymology , alpha-L-Fucosidase/metabolism , Calcium/metabolism , Fucose/analogs & derivatives , Sodium/metabolism
12.
Appl Biochem Biotechnol ; 186(3): 681-691, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29717409

ABSTRACT

Fucosylated oligosaccharides, such as 2'-fucosyllactose in human milk, have important biological functions such as prebiotics and preventing infection. In this work, the effect of an acceptor substrate (lactose) and the donor substrate 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) on the synthesis of a fucosylated trisaccharide was studied in a transglycosylation reaction using α-L-fucosidase from Thermotoga maritima. Conducting a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), it was demonstrated that synthesized oligosaccharide corresponded to a fucosylated trisaccharide, and high-performance liquid chromatography (HPLC) of the hydrolyzed compound confirmed it was fucosyllactose. As the concentration of the acceptor substrate increased, the concentration and synthesis rate of the fucosylated trisaccharide also increased, and the highest concentration obtained was 0.883 mM (25.2% yield) when using the higher initial lactose concentration (584 mM). Furthermore, the lower donor/acceptor ratio had the highest synthesis, so at the molar ratio of 0.001, a concentration of 0.286 mM was obtained (32.5% yield).


Subject(s)
Fucose/biosynthesis , Thermotoga maritima/enzymology , Trisaccharides/metabolism , alpha-L-Fucosidase/metabolism , Chromatography, High Pressure Liquid , Fucose/metabolism , Glycosylation , Lactose/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
13.
Tetrahedron Asymmetry ; 19(14): 1714-1719, 2009 Jan 25.
Article in English | MEDLINE | ID: mdl-20104250

ABSTRACT

A series of alpha-amino acid derivatives containing the 2,3-dihydroindole or octahydroindole core have been chemoenzymatically synthesized in good overall yields and high enantiomeric purity under mild reaction conditions using lipases for the introduction of chirality. Candida antarctica lipase type A has shown excellent activity and high enantiodiscrimination ability towards the two cyclic amino esters used as substrates. The selectivity of the process proved to be greatly dependent on the alkoxycarbonylating agent. Thus, the enzymatic kinetic resolution of methyl indoline-2-carboxylate has been successfully achieved using 3-methoxyphenyl allyl carbonate, whereas (2R,3aR,7aR)-benzyl octahydroindole-2-carboxylate required the less reactive diallyl carbonate.

SELECTION OF CITATIONS
SEARCH DETAIL
...