Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Carbohydr Polym ; 298: 119921, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36241255

ABSTRACT

Understanding of the viscoelastic behavior of a polymer is a prerequisite for its thermomechanical processing beyond laboratory scale. Utilizing rheological characterization is a powerful tool to comprehend the complex nature and time-dependent properties of macromolecular materials. Nevertheless, it consumes time as rheometry involves iterating experiments under several conditions to visualize the non-linear behavior of materials under varying conditions. The work hereunder examines the rheology of cellulosic aqueous suspensions prepared using cellulose fibers as the dispersed phase (Refcell and Storacell) and methylcellulose (MC) as the polymeric matrix. Interfacial phenomena between MC and cellulose fibers arise in particle laden systems with supramolecular structures formed by non-covalent interactions. Therefore, this study elucidates the rheological evolution of these interactions as a function of temperature and fiber concentration. This study displays how researchers may reduce the number of rheological experiments and save time utilizing a novel method based on a Bayesian optimization with Gaussian processes.


Subject(s)
Methylcellulose , Polymers , Bayes Theorem , Methylcellulose/chemistry , Rheology , Temperature
2.
Phys Rev E ; 105(5-1): 054152, 2022 May.
Article in English | MEDLINE | ID: mdl-35706318

ABSTRACT

Avalanches are often defined as signals higher than some detection level in bursty systems. The choice of the detection threshold affects the number of avalanches, but it can also affect their temporal correlations. We simulated the depinning of a long-range elastic interface and applied different thresholds including a zero one on the data to see how the sizes and durations of events change and how this affects temporal avalanche clustering. Higher thresholds result in steeper size and duration distributions and cause the avalanches to cluster temporally. Using methods from seismology, the frequency of the events in the clusters was found to decrease as a power-law of time, and the size of an event in a cluster was found to help predict how many events it is followed by. The results bring closer theoretical studies of this class of models to real experiments, but also highlight how different phenomena can be obtained from the same set of data.

3.
Sci Rep ; 11(1): 24306, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934137

ABSTRACT

Mimicking natural structures allows the exploitation of proven design concepts for advanced material solutions. Here, our inspiration comes from the anisotropic closed cell structure of wood. The bubbles in our fiber reinforced foam are elongated using temperature dependent viscosity of methylcellulose and constricted drying. The oriented structures lead to high yield stress in the primary direction; 64 times larger than compared to the cross direction. The closed cells of the foam also result in excellent thermal insulation. The proposed novel foam manufacturing process is trivial to up-scale from the laboratory trial scale towards production volumes on industrial scales.

4.
PLoS One ; 16(11): e0260237, 2021.
Article in English | MEDLINE | ID: mdl-34807943

ABSTRACT

Present day risk assessment on the spreading of airborne viruses is often based on the classical Wells-Riley model assuming immediate mixing of the aerosol into the studied environment. Here, we improve on this approach and the underlying assumptions by modeling the space-time dependency of the aerosol concentration via a transport equation with a dynamic source term introduced by the infected individual(s). In the present agent-based methodology, we study the viral aerosol inhalation exposure risk in two scenarios including a low/high risk scenario of a "supermarket"/"bar". The model takes into account typical behavioral patterns for determining the rules of motion for the agents. We solve a diffusion model for aerosol concentration in the prescribed environments in order to account for local exposure to aerosol inhalation. We assess the infection risk using the Wells-Riley model formula using a space-time dependent aerosol concentration. The results are compared against the classical Wells-Riley model. The results indicate features that explain individual cases of high risk with repeated sampling of a heterogeneous environment occupied by non-equilibrium concentration clouds. An example is the relative frequency of cases that might be called superspreading events depending on the model parameters. A simple interpretation is that averages of infection risk are often misleading. They also point out and explain the qualitative and quantitative difference between the two cases-shopping is typically safer for a single individual person.


Subject(s)
Basic Reproduction Number , COVID-19/transmission , Social Behavior , Aerosols , Diffusion , Humans , Inhalation , Models, Statistical , Monte Carlo Method , Restaurants/statistics & numerical data
5.
Soft Matter ; 17(27): 6675, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34180932

ABSTRACT

Correction for 'Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams' by Oskar Tainio et al., Soft Matter, 2021, 17, 145-152, DOI: 10.1039/D0SM01206H.

6.
Phys Chem Chem Phys ; 23(14): 8825-8835, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33876042

ABSTRACT

Complex fluids made of liquid crystals (LCs) and small molecules, surfactants, nanoparticles or 1D/2D nanomaterials show novel and interesting features, making them suitable materials for various applications starting from optoelectronics to biosensing. While these additives (impurities) introduce new features in the complex fluids, they may also alter the phase transition behaviour of LCs depending on the physiochemical properties of the added impurity. This article reports on the phase transition of 4-cyano-4'-alkylbiphenyl (nCB) LCs in the presence of an associative impurity, i.e., water and a non-associative impurity, i.e., hexane employing computational methods and experiments. In particular, all-atom (AA) simulations and coarse-grained (CG) models were designed for two complex systems, i.e., 6CB + water and 6CB + hexane and corresponding spectrophotometry experiments were performed using a homologous LC, i.e., 5CB. Results from the simulations and experiments elucidate that the phase transition of LCs depends on the mixing/demixing phenomenon of the impurity in the LC. While associative liquids like water which do not mix with LCs do not influence the nematic-to-isotropic phase transition of LCs, hexane, being a non-associative liquid, mixes well with LCs and induces a sharp impurity-induced nematic-to-isotropic phase transition. Upon application of both AA and CG simulations, we could reach the conclusion that the mixing/demixing phenomenon in an LC + impurity system influences the entropy of the system and hence the observed phase transitions are entropy-driven.

7.
Soft Matter ; 17(1): 145-152, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33155584

ABSTRACT

Unicellular Chlamydomonas reinhardtii micro-algae cells were inserted into a quasi-2D Hele-Shaw chamber filled with saponin foam. The movement of the algae along the bubble borders was then manipulated and tracked. These self-propelled particles generate flow and stresses in their surrounding matter. In addition, the algae possess the capability of exerting forces that alter bubble boundaries while maintaining an imminent phototactic movement. We find that by controlling the gas fraction of the foam we can change the interaction of the algae and bubbles. Specifically, our data expose three distinct swimming regimes for the algae with respect to the level of confinement due to the Plateau border cross-section: unlimited bulk, transition, and overdamped regimes. At the transition regime we find the speed of the algae to be modeled by a simple force balance equation emerging from the shear inside the Plateau border. Thus, we have shown that it is possible to create an algae-friendly foam while controlling the algae motion. This opens doors to multiple applications where the flow of nutrients, oxygen and recirculation of living organisms is essential.


Subject(s)
Chlamydomonas reinhardtii , Motion , Movement , Swimming
8.
Sci Adv ; 6(41)2020 Oct.
Article in English | MEDLINE | ID: mdl-33028532

ABSTRACT

The plastic deformation of metal alloys localizes in the Portevin-Le Chatelier effect in bands of different types, including propagating, or type "A" bands, usually characterized by their width and a typical propagation velocity. This plastic instability arises from collective dynamics of dislocations interacting with mobile solute atoms, but the resulting sensitivity to the strain rate lacks fundamental understanding. Here, we show, by using high-resolution imaging in tensile deformation experiments of an aluminum alloy, that the band velocities exhibit large fluctuations. Each band produces a velocity signal reminiscent of crackling noise bursts observed in numerous driven avalanching systems from propagating cracks in fracture to the Barkhausen effect in ferromagnets. The statistical features of these velocity bursts including their average shapes and size distributions obey predictions of a simple mean-field model of critical avalanche dynamics. Our results thus reveal a previously unknown paradigm of criticality in the localization of deformation.

9.
Soft Matter ; 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32842140

ABSTRACT

In rheological terms, foams are time independent yield stress fluids, displaying properties of both solid and liquid materials. Here we measure the propagation of a 2D dry foam in a radially symmetric Hele-Shaw cell forcing local yielding. The yield rate is manipulated by mechanical vibration with frequencies from 0 to 150 Hz. The flow speed is then extracted from the video stream and analyzed using digital image correlation software. The data are modeled analytically by a Guzman-Arrhenius type of energy landscape where the local yielding of foam correlates with the number of oscillations, i.e. attempts to cross the energy barrier. The model is confirmed in an auxiliary experiment where the vibrated foam stays in its flowing state at the same small driving pressures, where the flow of the unvibrated foam ceases. We conclude that the yield stress behaviour of foams under an external perturbation can be summarized using a simple energy landscape model. The vibration affects the films causing the stress to occasionally and locally exceed the yield threshold. This, thus, prevents the foam from jamming as in a static configuration even when the global driving is below the yield point of the foam.

10.
Saf Sci ; 130: 104866, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32834511

ABSTRACT

We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investigate the possibility of airborne transmission. The previous literature, our 0D-3D simulations by various physics-based models, and theoretical calculations, indicate that the typical size range of speech and cough originated droplets ( d ⩽ 20 µ m ) allows lingering in the air for O ( 1 h ) so that they could be inhaled. Consistent with the previous literature, numerical evidence on the rapid drying process of even large droplets, up to sizes O ( 100 µ m ) , into droplet nuclei/aerosols is provided. Based on the literature and the public media sources, we provide evidence that the individuals, who have been tested positive on COVID-19, could have been exposed to aerosols/droplet nuclei by inhaling them in significant numbers e.g. O ( 100 ) . By 3D scale-resolving computational fluid dynamics (CFD) simulations, we give various examples on the transport and dilution of aerosols ( d ⩽ 20 µ m ) over distances O ( 10 m ) in generic environments. We study susceptible and infected individuals in generic public places by Monte-Carlo modelling. The developed model takes into account the locally varying aerosol concentration levels which the susceptible accumulate via inhalation. The introduced concept, 'exposure time' to virus containing aerosols is proposed to complement the traditional 'safety distance' thinking. We show that the exposure time to inhale O ( 100 ) aerosols could range from O ( 1 s ) to O ( 1 min ) or even to O ( 1 h ) depending on the situation. The Monte-Carlo simulations, along with the theory, provide clear quantitative insight to the exposure time in different public indoor environments.

11.
Soft Matter ; 16(29): 6819-6825, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32632431

ABSTRACT

We study the compression of low-weight foam-formed materials made out of wood fibers. Initially the stress-strain behavior follows mean-field like response, related to the buckling of fiber segments as dictated by the random three-dimensional geometry. Our Acoustic Emission (AE) measurements correlate with the predicted number of segment bucklings for increasing strain. However, the experiments reveal a transition to collective phenomena as the strain increases sufficiently. This is also seen in the gradual failure of the theory to account for the stress-strain curves. The collective avalanches exhibit scale-free features both as regards the AE energy distribution and the AE waiting time distributions with both exponents having values close to 2. In cyclic compression tests, significant increases in the accumulated acoustic energy are found only when the compression exceeds the displacement of the previous cycle, which further confirms other sources of acoustic events than fiber bending.

12.
Sci Adv ; 5(2): eaav6380, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30783629

ABSTRACT

Magnetic monopoles, proposed as elementary particles that act as isolated magnetic south and north poles, have long attracted research interest as magnetic analogs to electric charge. In solid-state physics, a classical analog to these elusive particles has emerged as topological excitations within pyrochlore spin ice systems. We present the first real-time imaging of emergent magnetic monopole motion in a macroscopically degenerate artificial spin ice system consisting of thermally activated Ising-type nanomagnets lithographically arranged onto a pre-etched silicon substrate. A real-space characterization of emergent magnetic monopoles within the framework of Debye-Hückel theory is performed, providing visual evidence that these topological defects act like a plasma of Coulomb-type magnetic charges. In contrast to vertex defects in a purely two-dimensional artificial square ice, magnetic monopoles are free to evolve within a divergence-free vacuum, a magnetic Coulomb phase, for which features in the form of pinch-point singularities in magnetic structure factors are observed.

13.
Nat Commun ; 9(1): 5307, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30546114

ABSTRACT

Plastic deformation of micron-scale crystalline solids exhibits stress-strain curves with significant sample-to-sample variations. It is a pertinent question if this variability is purely random or to some extent predictable. Here we show, by employing machine learning techniques such as regression neural networks and support vector machines that deformation predictability evolves with strain and crystal size. Using data from discrete dislocations dynamics simulations, the machine learning models are trained to infer the mapping from features of the pre-existing dislocation configuration to the stress-strain curves. The predictability vs strain relation is non-monotonic and exhibits a system size effect: larger systems are more predictable. Stochastic deformation avalanches give rise to fundamental limits of deformation predictability for intermediate strains. However, the large-strain deformation dynamics of the samples can be predicted surprisingly well.

14.
Sci Rep ; 8(1): 17334, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30478268

ABSTRACT

Here, we follow the stable propagation of a roughening crack using simultaneously Digital Image Correlation and Infra-Red imaging. In a quasi-two-dimensional paper sample, the crack tip and ahead of that the fracture process zone follow the slowly, diffusively moving "hot spot" ahead of the tip. This also holds when the crack starts to roughen during propagation. The well-established intermittency of the crack advancement and the roughening of the crack in paper are thus subject to the dissipation and decohesion in the hot spot zone. They are therefore not only a result of the depinning of the crack in a heterogeneous material.

15.
Phys Chem Chem Phys ; 20(27): 18737-18743, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29961781

ABSTRACT

Liquid crystals have emerged as potential candidates for next-generation lubricants due to their tendency to exhibit long-range ordering. Here, we construct a full atomistic model of 4-cyano-4-hexylbiphenyl (6CB) nematic liquid crystal lubricants mixed with hexane and confined by mica surfaces. We explore the effect of the surface structure of mica, as well as lubricant composition and thickness, on the nanoscale friction in the system. Our results demonstrate the key role of the structure of the mica surfaces, specifically the positions of potassium (K+) ions, in determining the nature of sliding friction with monolayer lubricants, including the presence or absence of stick-slip dynamics. With the commensurate setup of confining surfaces, when the grooves created between the periodic K+ ions are parallel to the sliding direction we observe a lower friction force as compared to the perpendicular situation. Random positions of ions exhibit even smaller friction forces with respect to the previous two cases. For thicker lubrication layers the surface structure becomes less important and we observe a good agreement with the experimental data on bulk viscosity of 6CB and the additive hexane. In case of thicker lubrication layers, friction may still be controlled by tuning the relative concentrations of 6CB and hexane in the mixture.

16.
Sci Rep ; 8(1): 8123, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29802347

ABSTRACT

The curling motion of the curling stone on ice is well-known: if a small clockwise rotational velocity is imposed to the stone when it is released, in addition to the linear propagation velocity, the stone will curl to the right. A similar curl to the left is obtained by counter-clockwise rotation. This effect is widely used in the game to reach spots behind the already thrown stones, and the rotation also causes the stone to propagate in a more predictable fashion. Here, we report on novel experimental results which support one of the proposed theories to account for the curling motion of the stone, known as the "scratch-guiding theory". By directly scanning the ice surface with a white light interferometer before and after each slide, we observed cross-scratches caused by the leading and trailing parts of the circular contact band of the linearly moving and rotating stone. By analyzing these scratches and a typical curling stone trajectory, we show that during most of the slide, the transverse force responsible for the sideways displacement of the stone is linearly proportional to the angle between these cross-scratches.

17.
Sci Rep ; 8(1): 6914, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29720694

ABSTRACT

Plastic deformation of crystalline materials is governed by the features of stress-driven motion of dislocations. In the case of irradiated steels subject to applied stresses, small dislocation loops as well as precipitates are known to interfere with the dislocation motion, leading to an increased yield stress as compared to pure crystals. We study the combined effect of precipitates and interstitial glissile [Formula: see text] dislocation loops on the yield stress of iron, using large-scale three-dimensional discrete dislocation dynamics simulations. Precipitates are included in the simulations using our recent multi-scale implementation [A. Lehtinen et al., Phys. Rev. E 93 (2016) 013309], where the strengths and pinning mechanisms of the precipitates are determined from molecular dynamics simulations. In the simulations we observe dislocations overcoming precipitates with an atypical Orowan mechanism which results from pencil-glide of screw segments in iron. Even if the interaction mechanisms with dislocations are quite different, our results suggest that in relative terms, precipitates and loops of similar sizes contribute equally to the yield stress in multi-slip conditions.

18.
Nat Commun ; 8(1): 2138, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29233974

ABSTRACT

The original version of this article contained an error in the legend to Figure 4. The yellow scale bar should have been defined as '~600 nm', not '~600 µm'. This has now been corrected in both the PDF and HTML versions of the article.

19.
Soft Matter ; 13(41): 7657-7664, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28990623

ABSTRACT

We investigate the coupling between the interstitial medium and granular particles by studying the hopper flow of dry and submerged systems experimentally and numerically. In accordance with earlier studies, we find that the dry hopper empties at a constant rate. However, in the submerged system we observe the surging of the flow rate. We model both systems using the discrete element method, which we couple with computational fluid dynamics in the case of a submerged hopper. We are able to match the simulations and the experiments with good accuracy by fitting the particle-particle contact friction for each system separately. Submerging the hopper changes the particle-particle contact friction from µvacuum = 0.15 to µsub = 0.13, while all the other simulation parameters remain the same.

20.
Nat Commun ; 8(1): 995, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042556

ABSTRACT

Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we provide a first look into an artificial frustrated system, the dipolar trident lattice, where the balance of competing interactions between nearest-neighbor magnetic moments can be directly controlled, thus allowing versatile tuning of geometrical frustration and manipulation of ground state configurations. Our findings not only provide the basis for future studies on the low-temperature physics of the dipolar trident lattice, but also demonstrate how this frustration-by-design concept can deliver magnetically frustrated metamaterials.Artificial magnetic nanostructures enable the study of competing frustrated interactions with more control over the system parameters than is possible in magnetic materials. Farhan et al. present a two-dimensional lattice geometry where the frustration can be controlled by tuning the unit cell parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...