Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 106: 129762, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38649117

ABSTRACT

Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.


Subject(s)
Lipoproteins, LDL , Neoplasms , Humans , Lipoproteins, LDL/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Scavenger Receptors, Class E/metabolism , Scavenger Receptors, Class E/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Animals
2.
Chem Phys Lipids ; 261: 105396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621603

ABSTRACT

In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10'-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG2000-DSPE, and cholesterol. In situ drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from -6 mV to -18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1% w/v, resulting in a significant burst release of up to 40%. The in vivo therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52-53.5°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer in vitro and in vivo. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.


Subject(s)
Colonic Neoplasms , Doxorubicin , Mice, Inbred BALB C , Oxidation-Reduction , Phospholipids , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Mice , Phospholipids/chemistry , Temperature , Polyethylene Glycols/chemistry , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Liposomes/chemistry , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Particle Size
3.
Int J Pharm X ; 6: 100214, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38024450

ABSTRACT

Combination therapy represents a promising strategy in cancer management by reducing chemotherapy resistance and associated side effects. Silymarin (SLM) has been extensively investigated due to its potent antioxidant properties and demonstrated efficacy against cancer cells. Under certain conditions however, polyphenolic compounds may also exhibit prooxidant activity by elevating intracellular reactive oxygen species (ROS), which can harm the target cells. In this study, we hypothesized that the simultaneous administration of iron (Fe) could alter the antioxidant characteristic of SLM nanoliposomes (SLM Lip) to a prooxidant state. Hence, we first developed a SLM Lip preparation using lipid film method, and then investigated the anti-oxidant properties as well as the cytotoxicity of the liposomal preparation. We also explored the efficacy of concomitant administration of iron sucrose and SML Lip on the tumor growth and survival of mice bearing tumors. We observed that exposing cells to iron, and consecutive treatment with SLM Lip (Fe + SLM Lip) could induce greater toxicity to 4 T1 breast cancer cells compared to SLM Lip. Further, Fe + SLM Lip combination demonstrated a time-dependent effect on reducing the catalase activity compared to SLM Lip, while iron treatment did not alter cell toxicity and catalase activity. In a mouse breast cancer model, the therapeutic efficacy of Fe + SLM Lip was superior compared to SLM Lip, and the treated animals survived longer. The histopathological findings did not reveal a significant damage to the major organs, whereas the most significant tumor necrosis was evident with Fe + SLM Lip treatment. The outcomes of the present investigation unequivocally underscored the prospective use of Fe + SLM combination in the context of cancer therapy, which warrants further scrutiny.

4.
Int J Pharm ; 648: 123620, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37981250

ABSTRACT

The frequent administration rate required for Glatiramer acetate (GA), a first-line therapy for Multiple sclerosis (MS), poses patient compliance issues. Only a small portion of the subcutaneously administered GA is available for phagocytosis by macrophages, as most of it is hydrolyzed at its administration site or excreted renally. To unravel these hurdles, we have prepared liposomal formulations of GA through thin film-hydration method plus extrusion. The clinical and histopathological efficacy of GA-loaded liposomes were assessed in prophylactic and therapeutic manners on murine model of MS (experimental autoimmune encephalomyelitis (EAE)). The selected GA liposomal formulation showed favorable size (275 nm on average), high loading efficiency, and high macrophage localization. Moreover, administration of GA-liposomes in mice robustly suppressed the inflammatory responses and decreased the inflammatory and demyelinated lesion regions in CNS compared to the free GA with subsequent reduction of the EAE clinical score. Our study indicated that liposomal GA could be served as a reliable nanomedicine-based platform to hopefully curb MS-related aberrant autoreactive immune responses with higher efficacy, longer duration of action, fewer administration frequencies, and higher delivery rate to macrophages. This platform has the potential to be introduced as a vaccine for MS after clinical translation and merits further investigations.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Humans , Animals , Glatiramer Acetate/therapeutic use , Multiple Sclerosis/drug therapy , Peptides , Disease Models, Animal , Liposomes/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunity
5.
J Trace Elem Med Biol ; 80: 127291, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37672872

ABSTRACT

BACKGROUND: Several metallic elements with high atomic weight and density are serious systemic toxicants, and their wide environmental distribution increase the risk of their exposure to human. Silymarin (SL), a polyphenol from milk thistle (Silybum marianum) plant has shown protective role against heavy metal toxicity. However, its low aqueous solubility and rapid metabolism limits its therapeutic potential in clinic. METHODS: We compared the role of silymarin nanoliposomes (SL-L) against cadmium (Cd) toxicity in normal MRC-5 and A 549 cancer cells. MRC-5 and A 549 cells exposed to Cd at 25 and 0.25 µM respectively, were treated with various non-toxic SL-L concentrations (2.5, 5, 10 µM) and cells viability, reactive oxygen species (ROS) generation, apoptosis and levels of cleaved PARP and caspase-3 proteins were determined following incubation. RESULTS: Results indicated that Cd exposure significantly increased apoptosis due to ROS generation, and showed greater toxicity on cancer cells compared to normal cells. While SL-L at higher concentrations (25 µM and higher) exhibits pro-apoptotic features, lower concentrations (10 and 2.5 µM for MRC-5 and A 549 cancer cells, respectively) played a protective and anti-oxidant role in Cd induced toxicity in both cells. Further, lower SL-L was required to protect cancer cells against Cd toxicity. In general, treatment with SL-L significantly improved cell survival by decreasing ROS levels, cleaved PARP and caspase-3 in both MRC-5 and A 549 cells compared to free silymarin. CONCLUSION: Results demonstrated that SL-L potential in protecting against Cd-induced toxicity depends on concentration-dependent antioxidant and anti-apoptotic balance.


Subject(s)
Silymarin , Humans , Silymarin/pharmacology , Cadmium/toxicity , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Apoptosis , Lung/metabolism
6.
J Control Release ; 362: 278-296, 2023 10.
Article in English | MEDLINE | ID: mdl-37640110

ABSTRACT

Vaccination is an innovative strategy for cancer treatment by leveraging various components of the patients' immunity to boost an anti-tumor immune response. Rationally designed nanoparticles are well suited to maximize cancer vaccination by the inclusion of immune stimulatory adjuvants. Also, nanoparticles might control the pharmacokinetics and destination of the immune potentiating compounds. Poly-γ-glutamic acid (γ-PGA) based nanoparticles (NPs), which have a natural origin, can be easily taken up by dendritic cells (DCs), which leads to the secretion of cytokines which ameliorates the stimulation capacity of T cells. The intrinsic adjuvant properties and antigen carrier properties of γ-PGA NPs have been the focus of recent investigations as they can modulate the tumor microenvironment, can contribute to systemic anti-tumor immunity and subsequently inhibit tumor growth. This review provides a comprehensive overview on the potential of γ-PGA NPs as antigen carriers and/or adjuvants for anti-cancer vaccination.


Subject(s)
Nanoparticles , Neoplasms , Humans , Glutamic Acid , Adjuvants, Immunologic/pharmacology , Antigens , Adjuvants, Pharmaceutic , Polyglutamic Acid , Neoplasms/prevention & control , Vaccination , Dendritic Cells , Tumor Microenvironment
7.
J Liposome Res ; : 1-18, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37647288

ABSTRACT

PEGylation is a commonly used approach to prolong the blood circulation time of cationic liposomes. However, PEGylation is associated with the "PEG dilemma", which hinders binding and uptake into tumor cells. The cleavable PEG products are a possible solution to this problem. In the current research, doxorubicin-loaded cationic liposomes (Dox-CLs) surface-conjugated with a matrix metalloproteinase-2 (MMP-2)-sensitive octapeptide linker-PEG derivative were prepared and compared to non-PEGylated and PEGylated CLs in terms of size, surface charge, drug encapsulation and release, uptake, in vivo pharmacokinetics, and anticancer efficacy. It was postulated that PEG deshielding in response to the overexpressed MMP-2 in the tumor microenvironment increases the interaction of protected CLs with cellular membranes and improves their uptake by tumor cells/vasculature. MMP2-responsive Dox-CLs had particle sizes of ∼115-140 nm, surface charges of ∼+25 mV, and encapsulation efficiencies of ∼85-95%. In vitro cytotoxicity assessments showed significantly enhanced uptake and cytotoxicity of PEG-cleavable CLs compared to their non-cleavable PEG-coated counterparts or Caelyx®. Also, the chick chorioallantoic membrane assay showed great antiangiogenesis ability of Dox-CLs leading to target and prevent tumor neovascularization. Besides, in vivo studies showed an effective therapeutic efficacy of PEG-cleavable Dox-CLs in murine colorectal cancer with negligible hematological and histopathological toxicity. Altogether, our results showed that MMP2-responsive Dox-CLs could be served as a promising approach to improve tumor drug delivery and uptake.

8.
Biochem Biophys Res Commun ; 676: 103-108, 2023 10 08.
Article in English | MEDLINE | ID: mdl-37506470

ABSTRACT

BACKGROUND: Acetaminophen (Act) overdose is a known inducer of liver failure in both children and adults. Cell annihilation ensues following acetaminophen overdose and its toxic metabolites by depleting cellular GSH storage and increasing ROS levels. Silymarin extract and its major compound silibinin (SLB) possess robust antioxidant properties by inducing ROS elimination; however, low bioavailability and rapid metabolism limit their applications. Herein, we aimed at using SLB liposomes to combat acetaminophen-induced acute liver toxicity. METHODS: We have developed a SLB-lipid complex to improve SLB loading efficiency within nanoliposome by using the lipid film method. Liposomes were characterized by using DLS and TEM analysis, and the release pattern, and toxicity profile on the normal cells as well as histopathological and serum analysis were investigated to reveal relevant enzyme activities in an animal model. RESULTS: Data demonstrated that negatively-charged SLB liposomes of 115 nm had homogeneous spherical morphology, and entrapped a considerable quantity of SLB of almost 40%. Liposomes shows a favorable release pattern and were not toxic against NIH3T3 mouse fibroblast cells. The animal study revealed that treatment of mice with SLB nanoliposomes could significantly preserve liver function as revealed by the reduced levels of ALT and AST hepatic enzymes as well as ALP in the serum. Our data indicated that intraperitoneal administration of SLB Lip could significantly reduce ALT enzyme levels (p < 0.05) compared to N-acetylcysteine, while i.v administration resulted in no significant difference compared to control animals with no treatment. CONCLUSION: The results of this study support the significant hepatoprotective effect of SLB nanoliposomes against acetaminophen-induced toxicity depending on the route of administration.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Failure , Mice , Animals , Silybin/pharmacology , Acetaminophen/pharmacology , Liposomes/metabolism , NIH 3T3 Cells , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver Failure/pathology , Lipids/pharmacology , Chemical and Drug Induced Liver Injury/pathology
9.
Drug Discov Today ; 28(8): 103663, 2023 08.
Article in English | MEDLINE | ID: mdl-37315763

ABSTRACT

The novel coronavirus crisis caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a global pandemic. Although various therapeutic approaches were developed over the past 2 years, novel strategies with more efficient applicability are required to target new variants. Aptamers are single-stranded (ss)RNA or DNA oligonucleotides capable of folding into unique 3D structures with robust binding affinity to a wide variety of targets following structural recognition. Aptamer-based theranostics have proven excellent capability for diagnosing and treating various viral infections. Herein, we review the current status and future perspective of the potential of aptamers as COVID-19 therapies.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Humans , SARS-CoV-2 , Oligonucleotides/chemistry , DNA , RNA , Aptamers, Nucleotide/therapeutic use , Aptamers, Nucleotide/chemistry
10.
Cancer Nanotechnol ; 14(1): 18, 2023.
Article in English | MEDLINE | ID: mdl-36910721

ABSTRACT

Background: Colorectal cancer is one of the prominent leading causes of fatality worldwide. Despite recent advancements within the field of cancer therapy, the cure rates and long-term survivals of patients suffering from colorectal cancer have changed little. The application of conventional chemotherapeutic agents like doxorubicin is limited by some drawbacks such as cardiotoxicity and hematotoxicity. Therefore, nanotechnology has been exploited as a promising solution to address these problems. In this study, we synthesized and compared the anticancer efficacy of doxorubicin-loaded liposomes that were surface engineered with the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-matrix metalloproteinase-2 (MMP-2) cleavable peptide-polyethylene glycol (PEG) conjugate. The peptide linker was used to cleave in response to the upregulated MMP-2 in the tumor microenvironment, thus exposing a positive charge via PEG-deshielding and enhancing liposomal uptake by tumor cells/vasculature. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell binding and uptake, and cytotoxicity. Results: The formulations had particle sizes of ~ 100-170 nm, narrow distribution (PDI ˂ 0.2), and various surface charges (- 10.2 mV to + 17.6 mV). MMP-2 overexpression was shown in several cancer cell lines (C26, 4T1, and B16F10) as compared to the normal NIH-3T3 fibroblast cells by gelatin zymography and qRT-PCR. In vitro results demonstrated enhanced antitumor efficacy of the PEG-cleavable cationic liposomes (CLs) as compared to the commercial Caelyx® (up to fivefold) and the chick chorioallantoic membrane assay showed their great antiangiogenesis potential to target and suppress tumor neovascularization. The pharmacokinetics and efficacy studies also indicated higher tumor accumulation and extended survival rates in C26 tumor-bearing mice treated with the MMP-2 cleavable CLs as compared to the non-cleavable CLs with no remarkable sign of toxicity in healthy tissues. Conclusion: Altogether, the MMP-2-cleavable CLs have great potency to improve tumor-targeted drug delivery and cellular/tumor-vasculature uptake which merits further investigation. Supplementary Information: The online version contains supplementary material available at 10.1186/s12645-023-00169-8.

11.
J Drug Target ; 31(1): 32-50, 2023 01.
Article in English | MEDLINE | ID: mdl-35971773

ABSTRACT

Cancer is one of the most lethal diseases, and limited available treatment options contribute to its high mortality rate. Exosomes are considered membrane-bound nanovesicles that include different molecules such as lipids, proteins, and nucleic acids. Virtually most cells could release exosomes via exocytosis in physiological and pathological conditions. Tumour-derived exosomes (TDEs) play essential roles in tumorigenesis, proliferation, progression, metastasis, immune escape, and chemoresistance by transferring functional biological cargos, triggering different autocrine, and paracrine signalling cascades. Due to their antigen-presenting properties, exosomes are widely used as biomarkers and drug carriers and have a prominent role in cancer immunotherapy. They offer various advantages in carrier systems (e.g. in chemotherapy, siRNA, and miRNA), delivery of diagnostic agents owing to their stability, loading of hydrophobic and hydrophilic agents, and drug targeting. Novel exosomes-based carriers can be generated as intelligent systems using various sources and crosslinking chemistry extracellular vesicles (EVs). Exosomes studded with targeting ligands, including peptides, can impart in targeted delivery of cargos to tumour cells. In this review, we comprehensively summarised the important role of tumour-derived exosomes in dictating cancer pathogenesis and resistance to therapy. We have therefore, investigated in further detail the pivotal role of tumour-derived exosomes in targeting various cancer cells and their applications, and prospects in cancer therapy and diagnosis. Additionally, we have implicated the potential utility and significance of tumour exosomes-based nanoparticles as an efficient and novel therapeutic carrier and their applications in treating advanced cancers.


Subject(s)
Exosomes , Extracellular Vesicles , Neoplasms , Humans , Exosomes/metabolism , Drug Resistance, Neoplasm , Neoplasms/therapy , Extracellular Vesicles/metabolism , Drug Delivery Systems
12.
Sci Rep ; 12(1): 11310, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35788647

ABSTRACT

In this study redox-sensitive (RS) liposomes manufactured using 10,10'-diselanediylbis decanoic acid (DDA), an organoselenium RS compound, to enhance the therapeutic performance of doxorubicin (Dox). The DDA structure was confirmed by 1H NMR and LC-MS/MS. Various liposomal formulations (33 formulations) were prepared using DOPE, Egg PC, and DOPC with Tm Ë‚ 0 and DDA. Some formulations had mPEG2000-DSPE and cholesterol. After extrusion, the external phase was exchanged with sodium bicarbonate to create a pH gradient. Then, Dox was remotely loaded into liposomes. The optimum formulations indicated a burst release of 30% in the presence of 0.1% hydrogen peroxide at pH 6.5, thanks to the redox-sensitive role of DDA moieties; conversely, Caelyx (PEGylated liposomal Dox) showed negligible release at this condition. RS liposomes consisting of DOPE/Egg PC/DDA at 37.5 /60/2.5% molar ratio, efficiently inhibited C26 tumors among other formulations. The release of Dox from RS liposomes in the TME through the DDA link fracture triggered by ROS or glutathione is seemingly the prerequisite for the formulations to exert their therapeutic action. These findings suggest the potential application of such intelligent formulations in the treatment of various malignancies where the TME redox feature could be exploited to achieve an improved therapeutic response.


Subject(s)
Liposomes , Neoplasms , Chromatography, Liquid , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Humans , Liposomes/chemistry , Oxidation-Reduction , Polyethylene Glycols/chemistry , Tandem Mass Spectrometry
13.
Iran J Basic Med Sci ; 25(3): 302-312, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35656188

ABSTRACT

Objectives: Brain cancer treatments have mainly failed due to their inability to cross the blood-brain barrier. Several studies have confirmed the presence of glutathione (GSH) receptors on BBB's surface, as a result, products like 2B3-101, which contain over 5% pre-inserted GSH PEGylated liposomal doxorubicin, are being tested in clinical trials. Here we conducted the PEGylated nanoliposomal doxorubicin particles that are covalently attached to the glutathione using the post-insertion technique. Compared with the pre-insertion approach, the post-insertion method is notably simpler, faster, and more cost-effective, making it ideal for large-scale pharmaceutical manufacturing. Materials and Methods: The ligands of the DSPE PEG(2000) Maleimide-GSH were introduced in the amounts of 25, 50, 100, 200, and 400 on the available Caelyx. Following physicochemical evaluations, animal experiments such as biodistribution, fluorescence microscopy, and pharmacokinetics were done. Results: In comparison with Caelyx, the 200L and 400L treatment arms were the most promising formulations. We showed that nanocarriers containing 40 times fewer GSH micelles than 2B3-101 significantly increased blood-brain barrier penetrance. Due to the expressed GSH receptors on tissues as an endogenous antioxidant, doxorubicin will likely concentrate in the liver, spleen, heart, and lung in comparison with Caelyx, according to other tissue analyses. Conclusion: The post-insertion technique was found a successful approach with more pharmaceutical aspects for large-scale production. Moreover, further investigations are highly recommended to determine the efficacy of 5% post-inserted GSH targeted nanoliposomes versus 2B3-101 as a similar formulation with a different preparation method.

14.
Int J Pharm ; 623: 121946, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35750277

ABSTRACT

Cis-Diaminedichloroplatinum (cisplatin, CDDP) remained among the most widely used anti-cancer agents; however, management of the dose-limiting side effects is still a great hurdle to its therapeutic potential. In the framework of this investigation, novel approach was developed for CDDP encasement within liposome based on the formation of a coordination bond between the platinum (II) atom and a carboxylic group in aspartic acid (AA) and glutamic acid (GA). We have also compared two methods of preparation based on equilibration and conventional lipid film hydration. For this, first FTIR spectra of the conjugates confirmed coordination bond between Pt and the carboxylate moieties. The PEGylated liposomes composed of HSPC, cholesterol and DPPG had a size of 134 to 197 nm and negative zeta potential (-14.20 to -20.90 mv). Cytotoxicity study revealed IC50 values of <7 µg/ml for liposomes. In vivo plasma retention following iv administration indicated the potential of liposome in maintaining cisplatin levels within the circulation, while free cisplatin and cisplatin conjugates were promptly eliminated. Anti-tumor efficacy studies following iv injections at 3 mg/kg cisplatin weekly for three weeks in C26 tumor bearing BALB/c mice demonstrated the potential of the cisplatin liposomes in tumor growth inhibition. Pt-complexes were not as effective as liposomal formulations showing the crucial role of liposomes in maintaining cisplatin levels within blood circulation. Overall, the developed cisplatin liposome seems to be a promising therapeutic approach for targeting solid tumors.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Amino Acids , Animals , Cell Line, Tumor , Cisplatin , Liposomes/chemistry , Mice , Phospholipids/chemistry , Polyethylene Glycols/chemistry
15.
IET Nanobiotechnol ; 16(3): 67-77, 2022 May.
Article in English | MEDLINE | ID: mdl-35274474

ABSTRACT

After the outbreak of coronavirus disease 2019 (COVID-19) in December 2019 and the increasing number of SARS-CoV-2 infections all over the world, researchers are struggling to investigate effective therapeutic strategies for the treatment of this infection. Targeting viral small molecules that are involved in the process of infection is a promising strategy. Since many host factors are also used by SARS-CoV-2 during various stages of infection, down-regulating or silencing these factors can serve as an effective therapeutic tool. Several nucleic acid-based technologies including short interfering RNAs, antisense oligonucleotides, aptamers, DNAzymes, and ribozymes have been suggested for the control of SARS-CoV-2 as well as other respiratory viruses. The antisense technology also plays an indispensable role in the treatment of many other diseases including cancer, influenza, and acquired immunodeficiency syndrome. In this review, we summarised the potential applications of antisense technology for the treatment of coronaviruses and specifically COVID-19 infection.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , SARS-CoV-2/genetics , Technology
16.
J Control Release ; 343: 620-644, 2022 03.
Article in English | MEDLINE | ID: mdl-35176392

ABSTRACT

Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nanoparticles , Animals , Cytokines , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunity, Cellular , Multiple Sclerosis/drug therapy
17.
Infect Disord Drug Targets ; 22(1): e220321192415, 2022.
Article in English | MEDLINE | ID: mdl-33749564

ABSTRACT

In late 2019, a report from China was published stating a disease with an unknown cause. After that, the outbreak of the COVID-19 caused a pandemic in the world. On March 11, 2020, the outbreak of this virus was reported in 100 countries. The virus is currently spreading rapidly around the world. In the past, coronaviruses caused lifethreatening diseases such as SARS and MERS in some areas of the world. Although there is still a debate about the origin of this new coronavirus, it is most likely linked with some animals, including bats, civet, and pangolin. In this review, we try to describe the features of the new coronavirus as well as the recent diagnostic and therapeutic findings.


Subject(s)
COVID-19 , Chiroptera , Middle East Respiratory Syndrome Coronavirus , Animals , COVID-19/epidemiology , Humans , Pandemics , Prevalence , SARS-CoV-2
18.
Expert Opin Drug Deliv ; 18(12): 1795-1813, 2021 12.
Article in English | MEDLINE | ID: mdl-34747298

ABSTRACT

INTRODUCTION: Multiple Sclerosis (MS), as an autoimmune disease, has complicated immunopathology, which makes its management relevant to various factors. Novel pharmaceutical vehicles, especially liposomes, can support efficacious handling of this disease both in early detection and prognosis and also in a therapeutic manner. The most well-known triggers of MS onset are the predominance of cellular to humoral immunity and enhancement of inflammatory cytokines level. The installation of liposomes as nanoparticles to control this disease holds great promise up to now. AREAS COVERED: Various types of liposomes with different properties and purposes have been formulated and targeted immune cells with their surface manipulations. They may be encapsulated with anti-inflammatory, MS-related therapeutics, or immunodominant myelin-specific peptides for attaining a higher therapeutic efficacy of the drugs or tolerance induction. Cationic liposomes are also highly applicable for gene delivery of the anti-inflammatory cytokines or silencing the inflammatory cytokines. Liposomes have also been used as biotools for comprehending MS pathomechanisms or as diagnostic agents. EXPERT OPINION: The efforts to manage MS through nanomedicine, especially liposomal therapeutics, pave a new avenue to a high-throughput medication of this autoimmune disease and their translation to the clinic in the future for overcoming the challenges that MS patients confront.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Anti-Inflammatory Agents/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Humans , Liposomes , Multiple Sclerosis/drug therapy , Peptides
19.
J Pharm Sci ; 110(12): 3919-3928, 2021 12.
Article in English | MEDLINE | ID: mdl-34418455

ABSTRACT

The drug delivery systems improve the efficacy of chemotherapeutics through enhanced targeting and controlled release however, biological barriers of tumor microenvironment greatly impede the penetration of nanomedicine within the tumor. We report herein the fabrication of a PEG-detachable silybin (SLB) pH-sensitive liposome decorated with TAT-peptide. For this, Acyl hydrazide-activated PEG2000 was prepared and linked with ketone-derivatized DPPE via an acid-labile hydrazone bond to form mPEG2000-HZ-DPPE. TAT peptide was conjugated with a shorter -PEG1000-DSPE spacer and post-inserted into PEGylated liposome (DPPC: mPEG2000-DSPE: Chol). To prepare nanoliposomes (around 100 nm), first, a novel method was used to prepare SLB-Soya PC (SLB-SPC) complex, then this complex was incorporated into nanoliposomes. The pH-sensitivity and shielding effect of long PEG chain on TAT peptide was investigated using DiI liposome and FACS analysis. Pre-treatment to the lowered pH enhanced cellular association of TAT-modified pH-sensitive liposome due to the cleavage of hydrazone bond and TAT exposure. Besides, TAT-modified pH-sensitive liposomes significantly reduced cell viability compared to the plain liposome. In vivo results were very promising with pH-sensitive liposome by detaching PEG moieties upon exposure to the acidic tumor microenvironment, enhancing cellular uptake, retarding tumor growth, and prolonging the survival of 4T1 breast tumor-bearing BALB/c mice. TAT modification of pH-sensitive liposome improved cancer cell association and cytotoxicity and demonstrated potential intracellular delivery upon exposure to acidic pH. However, in in vivo studies, TAT as a targeting ligand significantly decreased the therapeutic efficacy of the formulation attributed to an inefficient tumor accumulation and higher release rate in the circulation. The results of this study indicated that pH-sensitive liposome containing SLB, which was prepared with a novel method with a significant SLB loading efficiency, is very effective in the treatment of 4T1 breast tumor-bearing BALB/c mice and merits further investigation.


Subject(s)
Doxorubicin , Liposomes , Animals , Cell Line, Tumor , Drug Delivery Systems/methods , Humans , Hydrogen-Ion Concentration , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Polyethylene Glycols/chemistry , Silybin
20.
Iran J Basic Med Sci ; 24(2): 222-231, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33953862

ABSTRACT

OBJECTIVES: Whole Leishmania lysate antigens (WLL) has been shown to be effective to tackle leishmaniasis in murine models. Although liposomes can be considered as promising vaccines, the activity of phospholipase-A (PLA) in WLL, breeds difficulties to preparing stable liposomal WLL. One strategy to overcome this shortcoming is to use lipids such as sphingomyelin (SM) which is resistant against PLA. This study aim is formulating stable SM liposomes containing WLL and comparing their adjuvant effects with another first generation vaccine , i.e. solube Leishmania Antigen (SLA) liposomes in BALB/c mice. MATERIALS AND METHODS: BALB/c mice were immunized subcutaneously, three times with 2-week intervals, with Empty-liposome (E-lipo), Particulate WLL, Liposome-WLL, Liposome-SLA and control Buffer, three times every 2-week. Protection was assessed through measuring the swollen footpads and the load of parasites in the spleen. Other factors were used to assess the response of immune system by means of IgG subclasses, IL-4 and IFN-γ levels and intracellular cytokine assay in cultured splenocytes. RESULTS: Although liposomal WLL were stable in terms of physicochemical properties, mice received Liposome-WLL did not reduce footpad swelling. The load of parasites in spleen and levels of IL-4- were also higher compared to other immunized groups. In terms of IgG isotypes, no considerable difference observed in mice received Liposome-WLL or other formulations. CONCLUSION: Liposome-WLL could be a suitable vaccine delivery system when a Th2 response is desired. Also, further studies are warranted to fully understand the role of sphingomyelin in inducing an immune response.

SELECTION OF CITATIONS
SEARCH DETAIL
...