Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 12(1): 253, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31118105

ABSTRACT

BACKGROUND: The intensive use of chemical insecticides against mosquitoes has led to the development of widespread insecticide resistance. Control of Anopheles mosquitoes in malaria endemic areas of sub-Saharan Africa has become increasingly difficult. There is an urgent need for malaria control programmes to adopt more integrated mosquito management approaches that include sustainable, nonchemical solutions. The mermithid nematode Romanomermis iyengari is one of several natural control alternatives to synthetic pesticides for mosquito suppression. This study evaluated the effectiveness of the nematode R. iyengari for control of Anopheles gambiae. METHODS: The nematode R. iyengari was mass-produced, and pre-parasitic stage (J2) were used for laboratory and field experiments. In laboratory experiments, two concentrations of pre-parasitics (5 and 10 J2 per larva) were tested against first- (L1), second- (L2) and third-instar (L3) larvae of An. gambiae. Infected larvae were observed daily to determine their mortality rate and the number of post-parasitic nematodes emerging from dead larvae. In field experiments, 3500, 4000 and 5000 J2/m2 were sprayed in separate natural Anopheles breeding sites. After treatment, the larval mosquito density in the breeding sites was assessed every 5-7 days. RESULTS: Laboratory results showed that larval An. gambiae is susceptible to nematode infection: 100% L1 larvae died within 24 hours post-treatment, and 100% of both L2 and L3 larvae died within 7 days, regardless of nematode concentrations. The average number of post-parasitic nematodes emerging per larva increased with increasing nematode concentration. In field experiments, the monthly applications of 3500 to 5000 pre-parasitic nematodes per m2 eliminated larval mosquito development in Anopheles- and mixed breeding sites. Larval mosquito density dramatically decreased five days after the first treatment in all treated sites and was maintained at a very low level during the whole experimental period. Basically, only early instar larva were detected in treated sites throughout the test period. The average number of post-parasitic nematodes emerging per larva collected in treated sites was 1.45, 2, and 5.7 respectively for sites treated with 3500, 4000, and 5000 J2/m2. CONCLUSIONS: Malaria mosquito larvae is susceptible to R. iyengari infection in West Africa. Parasitism intensity depends on tested nematode concentrations. Monthly application of 3500 J2/ m2 was enough to control effectively larval An. gambiae in wetlands and floodable locations in West Africa.


Subject(s)
Anopheles/parasitology , Biological Control Agents , Malaria/prevention & control , Mosquito Control/methods , Nematoda/physiology , Africa South of the Sahara/epidemiology , Africa, Western/epidemiology , Animals , Breeding , Disease Vectors , Larva/parasitology , Malaria/epidemiology , Mosquito Vectors/parasitology
2.
J Am Mosq Control Assoc ; 28(1): 15-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22533079

ABSTRACT

We studied the potential of the essential oil extract from the bush mint, Hyptis suaveolens, for use against mosquito biting under both laboratory and field conditions. In the laboratory, the repellency of various concentrations (1-6%) of the essential oil was assessed against Anopheles gambiae, based on a 15-min landing and biting on treated forearms of volunteers. In the laboratory, the percentage of mosquitoes landing on the forearm was 42, 33, 23, 23, 9, and 2 for 1%, 2%, 3%, 4%, 5%, and 6% essential oil concentration, respectively; and 92 and 91 for the solvent (isopropanol) and untreated control, respectively. The percentage of mosquitoes taking a blood meal was 22, 12, 13, 12, 5, and 3 for 1%, 2%, 3%, 4%, 5%, and 6% essential oil, respectively; and 52 and 51 for the solvent and control, respectively. In the field, the 6% essential oil repelled all mosquitoes immediately postapplication; this activity declined to 75% after 5 h. The repellent action of the 8% essential oil concentration was higher, 97% after 5 h. Based on these data, the essential oil of H. suaveolens appears to be a good candidate for use in the integrated management of mosquito vectors of disease.


Subject(s)
Culicidae , Hyptis/chemistry , Insect Bites and Stings/prevention & control , Insect Repellents/analysis , Oils, Volatile , Adolescent , Adult , Animals , Female , Humans , Male , Plant Extracts/therapeutic use , Young Adult
3.
Can J Microbiol ; 50(4): 279-89, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15213752

ABSTRACT

The non-self cellular (hemocytic) responses of Galleria mellonella larvae, including the attachment to slides and the removal of the bacteria Xenorhabdus nematophila and Bacillus subtilis from the hemolymph, were affected by N-formyl peptides. Both N-formyl methionyl-leucyl-phenylalanine (fMLF) and the ester derivative decreased hemocyte adhesion in vitro, and both elevated hemocyte counts and suppressed the removal of both X. nematophila and B. subtilis from the hemolymph in vivo. The amide derivative and the antagonist tertiary-butoxy-carbonyl-methionyl-leucyl-phenylalanine (tBOC) increased hemocyte attachment to glass. The fMLF suppressed protein discharge from monolayers of granular cells with and without bacterial stimulation, while tBOC stimulated protein discharge. The peptide tBOC offset the effects of fMLF in vitro and in vivo. This is the first report implying the existence of formyl peptide receptors on insect hemocytes in which the compounds fMLF and tBOC inhibited and activated hemocyte activity, respectively.


Subject(s)
Bacillus subtilis/physiology , Hemocytes/microbiology , Larva/drug effects , Lepidoptera/growth & development , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Xenorhabdus/physiology , Animals , Bacillus subtilis/chemistry , Hemocytes/physiology , Larva/microbiology , Lepidoptera/microbiology , Peptides/pharmacology , Xenorhabdus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...