Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 806(Pt 4): 150883, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34653475

ABSTRACT

The emission of nitrous oxide (N2O), a strong greenhouse gas, during crop residue decomposition in the soil can offset the benefits of residue recycling. The IPCC inventory considers agricultural N2O emissions proportional to the amount of nitrogen (N) added by residues to soils. However, N2O involves several emission pathways driven directly by the form of N returned and indirectly by changes in the soil induced by decomposition. We investigated the decomposition factors related to N2O emissions under controlled conditions. Residues of sugar beet (SUB), wheat (WHT), rape seed (RAS), potato (POT), pea (PEA), mustard (MUS), red clover (RC), alfalfa (ALF), and miscanthus (MIS), varying by maturity at the time of collection, were incubated in two soils (GRI and SLU) at 15 °C with a water-filled pore space of 60%. The residues contained a wide proportion range of water-soluble components, components soluble in neutral detergent (SOL-NDS), hemicellulose, cellulose, and lignin. Their composition drastically influenced the dynamics of C mineralization and soil ammonium and nitrate and was correlated with N2O flux dynamics. The net cumulative N2O emitted after 60 days originated mostly from MUS (4828 ± 892 g N-N2O ha-1), SUB (2818 ± 314 g N-N2O ha-1) and RC (2567 ± 1245 g N-N2O ha-1); the other residue treatments had much lower emissions (<200 g N-N2O ha-1). For the first time N2O emissions could be explained only by the residue content in the SOL-NDS, according to an exponential relationship. Residues with a high SOL-NDS (>25% DM) were also non-senescent and promoted high N2O emissions (representing 1-5% of applied N), likely directly by nitrification and indirectly by denitrification in microbial hotspots. Crop residue quality appears to be valuable information for accurately predicting N2O emissions and objectively weighing their other potential benefits to agriculture and the environment.


Subject(s)
Nitrous Oxide , Soil , Agriculture , Fertilizers , Nitrification , Nitrogen , Nitrous Oxide/analysis
2.
Bioresour Technol ; 97(11): 1284-95, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16055327

ABSTRACT

This study aimed at determining food processing wastewater composition factors that regulate their carbon and nitrogen mineralization when added to soil. Twenty three different wastewaters from various food processing industries were characterized by C and N concentrations, liquid and solid physical separation and acid solubility. They were also incubated in a calcareous soil during six months at 28 degrees C. The C and N concentrations were low but covered a wide range. Carbon and nitrogen were variously distributed in the liquid and solid fractions and much C was present in the acid-soluble fraction in which C to N ratios were low. The C and N mineralization measured during soil incubation covered a wide range of decomposition pathways. Carbon mineralization was linked significantly (p=0.05) with the C to N ratio of the acid soluble fraction and C present in the liquid fraction. N mineralization was significantly correlated (p=0.05) with the organic C to organic N ratio and the C to N ratio of the acid soluble fraction. Multiple factor analysis and clustering also enabled defining clusters which partially overlap the various origins of the wastewaters.


Subject(s)
Carbon/chemistry , Food-Processing Industry , Nitrogen/chemistry , Soil/analysis , Waste Disposal, Fluid/methods , Water Pollutants/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...