Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Indoor Air ; 30(1): 156-166, 2020 01.
Article in English | MEDLINE | ID: mdl-31665545

ABSTRACT

In this study, we explore different filter and contextual characteristics that influence effectiveness of high-efficiency filters in 21 residences in Toronto, Canada. The in situ effectiveness was assessed with decay tests at the beginning and the end of filter life with four different filters (MERV 8-14 from ASHRAE Standard 52.2) installed in operational HVAC systems, compared with either the system off or with no filter installed. There was considerable difference between median PM2.5 effectiveness of the non-electret filters when compared to electret filters (16% vs. 36%) of the same nominal efficiency (MERV 8). However, median PM2.5 effectiveness of electret filters only slightly improved (between 5% and 9% absolute increase) as MERV increased from 8 to 14. There was more variation in filter effectiveness between the same filter in different homes than there was between different filters in the same home. Variations in filter performance arose because home-specific particle loss rates (eg, ventilation rate) vary greatly in different buildings. The higher the loss rates due to non-filter factors, the lower the effectiveness of a filter. Given the relatively large variation in effectiveness for a given filter over time and in different homes, increasing system runtime may be a productive way to improve filter performance in many homes.


Subject(s)
Air Conditioning , Air Filters , Air Pollution, Indoor/analysis , Ventilation , Air Pollution, Indoor/statistics & numerical data , Canada , Environmental Monitoring , Filtration , Housing , Particulate Matter
2.
Environ Sci Technol ; 52(21): 12419-12427, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30346749

ABSTRACT

Nitrous acid (HONO) is an important component of indoor air as a photolabile precursor to hydroxyl radicals and has direct health effects. HONO concentrations are typically higher indoors than outdoors, although indoor concentrations have proved challenging to predict using box models. In this study, time-resolved measurements of HONO and NO2 in a residence showed that [HONO] varied relatively weakly over contiguous periods of hours, while [NO2] fluctuated in association with changes in outdoor [NO2]. Perturbation experiments were performed in which indoor HONO was depleted or elevated and were interpreted using a two-compartment box model. To reproduce the measurements, [HONO] had to be predicted using persistent source and sink processes that do not directly involve NO2, suggesting that HONO was in equilibrium with indoor surfaces. Production of gas phase HONO directly from conversion of NO2 on surfaces had a weak influence on indoor [HONO] during the time of the perturbations. Highly similar temporal responses of HONO and semivolatile carboxylic acids to ventilation of the residence along with the detection of nitrite on indoor surfaces support the concept that indoor HONO mixing ratios are controlled strongly by gas-surface equilibrium.


Subject(s)
Air Pollution, Indoor , Nitrous Acid , Housing , Nitrites , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL
...