Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 168: 107761, 2024 01.
Article in English | MEDLINE | ID: mdl-38039894

ABSTRACT

Though deep learning-based surgical smoke removal methods have shown significant improvements in effectiveness and efficiency, the lack of paired smoke and smoke-free images in real surgical scenarios limits the performance of these methods. Therefore, methods that can achieve good generalization performance without paired in-vivo data are in high demand. In this work, we propose a smoke veil prior regularized two-stage smoke removal framework based on the physical model of smoke image formation. More precisely, in the first stage, we leverage a reconstruction loss, a consistency loss and a smoke veil prior-based regularization term to perform fully supervised training on a synthetic paired image dataset. Then a self-supervised training stage is deployed on the real smoke images, where only the consistency loss and the smoke veil prior-based loss are minimized. Experiments show that the proposed method outperforms the state-of-the-art ones on synthetic dataset. The average PSNR, SSIM and RMSE values are 21.99±2.34, 0.9001±0.0252 and 0.2151±0.0643, respectively. The qualitative visual inspection on real dataset further demonstrates the effectiveness of the proposed method.


Subject(s)
Image Processing, Computer-Assisted , Physical Examination
2.
Sensors (Basel) ; 23(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36850676

ABSTRACT

Low-power wide area network (LPWAN) technologies such as IQRF are becoming increasingly popular for a variety of Internet of Things (IoT) applications, including smart cities, industrial control, and home automation. However, LPWANs are vulnerable to cyber attacks that can disrupt the normal operation of the network or compromise sensitive information. Therefore, analyzing cybersecurity risks before deploying an LPWAN is essential, as it helps identify potential vulnerabilities and threats as well as allowing for proactive measures to be taken to secure the network and protect against potential attacks. In this paper, a security risk analysis of IQRF technology is conducted utilizing the failure mode effects analysis (FMEA) method. The results of this study indicate that the highest risk corresponds to four failure modes, namely compromised end nodes, a compromised coordinator, a compromised gateway and a compromised communication between nodes. Moreover, through this methodology, a qualitative risk evaluation is performed to identify potential security threats in the IQRF network and propose countermeasures to mitigate the risk of cyber attacks on IQRF networks.

3.
Comput Med Imaging Graph ; 101: 102121, 2022 10.
Article in English | MEDLINE | ID: mdl-36174307

ABSTRACT

Video quality assessment is a challenging problem having a critical significance in the context of medical imaging. For instance, in laparoscopic surgery, the acquired video data suffers from different kinds of distortion that not only hinder surgery performance but also affect the execution of subsequent tasks in surgical navigation and robotic surgeries. For this reason, we propose in this paper neural network-based approaches for distortion classification as well as quality prediction. More precisely, a Residual Network (ResNet) based approach is firstly developed for simultaneous ranking and classification task. Then, this architecture is extended to make it appropriate for the quality prediction task by using an additional Fully Connected Neural Network (FCNN). To train the overall architecture (ResNet and FCNN models), transfer learning and end-to-end learning approaches are investigated. Experimental results, carried out on a new laparoscopic video quality database, have shown the efficiency of the proposed methods compared to recent conventional and deep learning based approaches.


Subject(s)
Laparoscopy , Robotic Surgical Procedures , Databases, Factual , Diagnostic Imaging , Neural Networks, Computer
4.
Artif Intell Med ; 130: 102331, 2022 08.
Article in English | MEDLINE | ID: mdl-35809970

ABSTRACT

Deep learning-based methods, in particular, convolutional neural networks and fully convolutional networks are now widely used in the medical image analysis domain. The scope of this review focuses on the analysis using deep learning of focal liver lesions, with a special interest in hepatocellular carcinoma and metastatic cancer; and structures like the parenchyma or the vascular system. Here, we address several neural network architectures used for analyzing the anatomical structures and lesions in the liver from various imaging modalities such as computed tomography, magnetic resonance imaging and ultrasound. Image analysis tasks like segmentation, object detection and classification for the liver, liver vessels and liver lesions are discussed. Based on the qualitative search, 91 papers were filtered out for the survey, including journal publications and conference proceedings. The papers reviewed in this work are grouped into eight categories based on the methodologies used. By comparing the evaluation metrics, hybrid models performed better for both the liver and the lesion segmentation tasks, ensemble classifiers performed better for the vessel segmentation tasks and combined approach performed better for both the lesion classification and detection tasks. The performance was measured based on the Dice score for the segmentation, and accuracy for the classification and detection tasks, which are the most commonly used metrics.


Subject(s)
Deep Learning , Liver Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Neural Networks, Computer
5.
Biomed Eng Online ; 17(1): 139, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30340594

ABSTRACT

BACKGROUND: In laparoscopic surgery, image quality can be severely degraded by surgical smoke, which not only introduces errors for the image processing algorithms (used in image guided surgery), but also reduces the visibility of the observed organs and tissues. To overcome these drawbacks, this work aims to remove smoke in laparoscopic images using an image preprocessing method based on a variational approach. METHODS: In this paper, we present the physical smoke model where the degraded image is separated into two parts: direct attenuation and smoke veil and propose an efficient variational-based desmoking method for laparoscopic images. To estimate the smoke veil, the proposed method relies on the observation that smoke veil has low contrast and low inter-channel differences. A cost function is defined based on this prior knowledge and is solved using an augmented Lagrangian method. The obtained smoke veil is then subtracted from the original degraded image, resulting in the direct attenuation part. Finally, the smoke free image is computed using a linear intensity transformation of the direct attenuation part. RESULTS: The performance of the proposed method is evaluated quantitatively and qualitatively using three datasets: two public real smoked laparoscopic datasets and one generated synthetic dataset. No-reference and reduced-reference image quality assessment metrics are used with the two real datasets, and show that the proposed method outperforms the state-of-the-art ones. Besides, standard full-reference ones are employed with the synthetic dataset, and indicate also the good performance of the proposed method. Furthermore, the qualitative visual inspection of the results shows that our method removes smoke effectively from the laparoscopic images. CONCLUSION: All the obtained results show that the proposed approach reduces the smoke effectively while preserving the important perceptual information of the image. This allows to provide a better visualization of the operation field for surgeons and improve the image guided laparoscopic surgery procedure.


Subject(s)
Image Processing, Computer-Assisted/methods , Laparoscopy , Smoke , Surgery, Computer-Assisted , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...