Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37687250

ABSTRACT

The goal of the current study was to prepare two new homologous series of N,N'-diarylurea and N,N'-diarylthiourea derivatives to investigate the therapeutic effects of these derivatives on the methodologies of inhibition directed on human MCF-7 cancer cells. The molecular structures of the prepared derivatives were successfully revealed through elemental analyses, 1H-NMR, 13C-NMR and FT-IR spectroscopy. The cytotoxic results showed that Diarylthiourea (compound 4) was the most effective in suppressing MCF-7 cell growth when compared to all other prepared derivatives, with the most effective IC50 value (338.33 ± 1.52 µM) after an incubation period of 24 h and no cytotoxic effects on normal human lung cells (wi38 cells). Using the annexin V/PI and comet tests, respectively, treated MCF-7 cells with this IC50 value of the Diarylthiourea 4 compound displayed a considerable increase in early and late apoptotic cells, as well as an intense comet nucleus in comparison to control cells. An arrest of the cell cycle in the S phase was observed via flow cytometry in MCF-7 cells treated with the Diarylthiourea 4 compound, suggesting the onset of apoptosis. Additionally, ELISA research showed that caspase-3 was upregulated in MCF-7 cells treated with compound 4 compared to control cells, suggesting that DNA damage induced by compound 4 may initiate an intrinsic apoptotic pathway and activate caspase-3. These results contributed to recognizing that the successfully prepared Diarylthiourea 4 compound inhibited the proliferation of MCF-7 cancer cells by arresting the S cell cycle and caspase-3 activation via an intrinsic apoptotic route. These results, however, need to be verified through in vivo studies utilizing an animal model.


Subject(s)
Cell Nucleus , Neoplasms , Animals , Humans , Caspase 3 , Spectroscopy, Fourier Transform Infrared , Proteolysis , MCF-7 Cells
2.
Molecules ; 28(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175214

ABSTRACT

The effect of the terminal benzyloxy group on the mesomorphic properties of liquid crystalline materials developed from rod-like Schiff base has been described. For this objective, a novel Schiff base liquid crystal family, specifically new series of Schiff base liquid crystals, namely, (E)-4-(alkyloxy)-N-(4-(benzyloxy)benzylidene)aniline, In, are prepared and investigated in detail. The length of the terminal alkyloxy chain (n) varies amongst the compounds in the series. Where n varies between 6, 8 and 16 carbons. At the other end of the compounds, benzyloxy moiety was attached. The molecular structures of all synthesized compounds were established using different spectroscopic techniques. The molecular self-assembly was explored using differential scanning calorimetry (DSC) and polarized optical microscope (POM). Depending on the length of the terminal alkyloxy chain, only one type of SmA phase with different stability was observed. The previously reported para-substituted systems and the present investigated compounds were compared and discussed. The calculated quantum chemical parameters were computationally correlated using the DFT method via the B3LYP 6-311G(d,p) basis set. The theoretical computations revealed that the length of the alkyl side chain influences the zero-point energy, reactivity and other estimated thermodynamic parameters of benzoyloxy/azomethine derivatives. Furthermore, the FMO energy analysis shows that molecule I16 have higher HOMO energies than the other compounds, and I6 has a much lower LUMO level than the rest.

3.
Heliyon ; 9(4): e14871, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025900

ABSTRACT

New organic derivatives named, (E)-3(or4) -(alkyloxy)-N-{(trifluoromethyl)benzylidene}aniline, 1a-f, were synthesized and examined their liquid crystalline behaviors. FT-IR, 1H NMR, 13C NMR, 19F NMR, elemental analyses and GCMS were used to validate the prepared compounds' chemical structures. We used differential scanning calorimetry (DSC) and polarized optical microscopy (POM) to investigate the mesomorphic characteristics of the formed Schiff bases. All tested compounds of series 1a-c have mesomorphic behaviour of nematogenic temperature ranges while the group 1d-f show non-mesomorphic properties. Moreover, it was found that the enantiotropic N phases included all of the homologue 1a-c. Computational studies using DFT (density functional theory) validated the experimental mesomorphic behavior results. All the analyzed compounds had their dipole moments, polarizability, and reactivity characteristics explained. Theoretical simulations showed that as the length of the terminal chain is increased, the polarizability of the stuided compounds increases. Consequently, compounds 1a and 1d have the least polarizability.

SELECTION OF CITATIONS
SEARCH DETAIL
...