Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv ; 28(1): 856-864, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33928831

ABSTRACT

SARS-CoV-2 is a novel coronavirus that was isolated and identified for the first time in Wuhan, China in 2019. Nowadays, it is a worldwide danger and the WHO named it a pandemic. In this investigation, a functionalization post-synthesis method was used to assess the ability of an adapted SBA-15 surface as a sorbent to load the drug from an aqueous medium. Different characterization approaches were used to determine the characterization of the substance before and after functionalization such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller) BET surface area analysis, and thermal gravimetric analysis (TGA). Batch adsorption testing was carried out in a single adsorption device to find the impact of multiple variables on the drug amoxicillin charge output. The following parameters were studied: 0-72 hr. contact time, 20-120 mg/l initial concentration, and 20-250 mg of NH2-SBA-15 dose. The outcomes from such experiments revealed the strong influence and behavior of the amino-functional group to increase the drug's load. Drug delivery outcomes studies found that amoxicillin loading was directly related to NH2-SBA-15 contact time and dose, but indirectly related to primary concentration. It was observed that 80% of amoxicillin was loaded while the best release test results were 1 hour and 51%.


Subject(s)
Amoxicillin/therapeutic use , COVID-19 Drug Treatment , Silicon Dioxide/chemistry , Amoxicillin/administration & dosage , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Drug Delivery Systems , Humans , Microscopy, Electron, Scanning , Porosity , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
2.
Heliyon ; 5(10): e02539, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31667391

ABSTRACT

In this work, the potential of the modified SBA-15 surface was examined as a sorbent to load the drug from an aqueous solution; this was done using a post-synthesis function procedure. Several means were used to identify the material characterization before and after functionalization, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area, Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). To obtain the effect of different variables on the efficacy of chloramphenicol drug load, batch adsorption experiments have been performed in a single adsorption system. These variables were the dosage of NH2-SBA-15 (10-120) mg, contact time (0-72 h) and initial concentration (10-120 mg/L). The results of these experiments showed the significant and active effect of the functional amino group in increasing the drug's load capacity. The results of these experiments showed that the functional amino group had a significant and active effect in increasing the drug's capacity. Also, the loading capacity is inversely proportional to the initial concentration, but directly proportional to the NH2-SBA-15 dose and contact time. The best results at 1 hour for the release were 41%. It was found that the load efficiency of chloramphenicol was 51%.

SELECTION OF CITATIONS
SEARCH DETAIL
...