Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Pharm Sci ; 107(3): 897-908, 2018 03.
Article in English | MEDLINE | ID: mdl-29155235

ABSTRACT

The present work highlights the use of miniaturized approaches to screen and prioritize development of solid dispersions that provide stabilization of the amorphous drug against crystallization and enhanced dissolution over the crystalline form. The approaches evaluated include solvent casting and solvent displacement-based techniques. Four compounds were evaluated with both these screening approaches. A dual-pH dilution method using fasted state simulated gastric fluid and fasted state simulated intestinal fluid as media was used to evaluate solubility enhancement ratio in each well of the screen. The concentration at 15 mins after dilution with fasted state simulated intestinal fluid and super-saturation ratio at the end of the dissolution study is used as 2 descriptors of solubility enhancement. The empirical screening approaches were supplemented with theoretical calculations of solubility enhancement to gauge the best-performing amorphous solid dispersion (ASD). Physical stability of the amorphous systems was also evaluated, where applicable. Lead ASD compositions from the screens were scaled up to verify the predictions. To our knowledge, this is the first report where the 2 most common screening approaches for the development of ASDs are compared head to head. These approaches are rapid, material sparing, and can be adapted to accommodate screening of multiple variables such as polymer type, drug load, and ternary systems simultaneously. The strengths, limitations, and most suitable applications for each of the 2 methods are also discussed.


Subject(s)
Pharmaceutical Preparations/chemistry , Polymers/chemistry , Chemistry, Pharmaceutical/methods , Crystallization/methods , Drug Carriers/chemistry , Drug Stability , Solubility
2.
J Med Chem ; 57(8): 3430-49, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24641103

ABSTRACT

We describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3, including many FLT3 mutants reported to date. Compound 28 inhibits the proliferation of a panel of human tumor cell lines including Colo205 (Rb(+)) and U937 (FLT3(WT)) and induced cell death in MOLM13 (FLT3(ITD)) and even in MOLM13 (FLT3(ITD, D835Y)), which exhibits resistance to a number of FLT3 inhibitors currently under clinical development. At well-tolerated doses, compound 28 leads to significant growth inhibition of MOLM13 xenografts in nude mice, and the activity correlates with inhibition of STAT5 and Rb phosphorylation.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemical synthesis , Naphthyridines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Dogs , Drug Discovery , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Macaca fascicularis , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Structure-Activity Relationship , U937 Cells , fms-Like Tyrosine Kinase 3/genetics
3.
Mol Cancer Ther ; 13(4): 880-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24526162

ABSTRACT

Acute myeloid leukemia (AML) remains a serious unmet medical need. Despite high remission rates with chemotherapy standard-of-care treatment, the disease eventually relapses in a major proportion of patients. Activating Fms-like tyrosine kinase 3 (FLT3) mutations are found in approximately 30% of patients with AML. Targeting FLT3 receptor tyrosine kinase has shown encouraging results in treating FLT3-mutated AML. Responses, however, are not sustained and acquired resistance has been a clinical challenge. Treatment options to overcome resistance are currently the focus of research. We report here the preclinical evaluation of AMG 925, a potent, selective, and bioavailable FLT3/cyclin-dependent kinase 4 (CDK4) dual kinase inhibitor. AMG 925 inhibited AML xenograft tumor growth by 96% to 99% without significant body weight loss. The antitumor activity of AMG 925 correlated with the inhibition of STAT5 and RB phosphorylation, the pharmacodynamic markers for inhibition of FLT3 and CDK4, respectively. In addition, AMG 925 was also found to inhibit FLT3 mutants (e.g., D835Y) that are resistant to the current FLT3 inhibitors (e.g., AC220 and sorafenib). CDK4 is a cyclin D-dependent kinase that plays an essential central role in regulating cell proliferation in response to external growth signals. A critical role of the CDK4-RB pathway in cancer development has been well established. CDK4-specific inhibitors are being developed for treating RB-positive cancer. AMG 925, which combines inhibition of two kinases essential for proliferation and survival of FLT3-mutated AML cells, may improve and prolong clinical responses.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Naphthyridines/administration & dosage , Protein Kinase Inhibitors/administration & dosage , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Nude , Naphthyridines/pharmacokinetics , Naphthyridines/therapeutic use , Neoplasms, Experimental , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Phenylurea Compounds/pharmacology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Pyridines/pharmacology , Signal Transduction/drug effects , Sorafenib , U937 Cells , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL