Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Test Mol Biomarkers ; 25(12): 757-764, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34918981

ABSTRACT

Aim: Our goal was to determine the genetic basis of early-onset myopathy in patients from two unrelated families. Materials and Methods: Whole-exome sequencing, autozygosity mapping, and confirmatory targeted Sanger sequencing were performed using genomic DNA extracted from blood samples from three myopathic patients of two unrelated families. Variant filtering and pathogenicity analyses were evaluated according to standard protocols and up-to-date pipelines applied at the King Faisal Specialist Hospital and Research Center. Results: A novel homozygous variant was detected in TTN gene within the first three M-line-encoding exons in a 9-year-old female in the first family who had delayed motor development and proximal weakness. Her 4-year-old affected brother, with the same homozygous variant, could not yet walk without help. This pathogenic nonsense variant is predicted to cause a premature stop during translation. In the second family we identified two novel variants as compound heterozygosites (a deletion and a variant affecting a canonical splice site) in an affected 9-year-old female with weakness that developed at age 3, in the second family. SpliceAI predicted the variants being splice-altering with high probability. These variants were fully segregated in the family. The deletion was found to be on the paternal allele, whereas the splicing variant was on the maternal allele. The patient's echocardiography revealed mitral valve prolapse with mild mitral regurgitation. Muscle histology showed minicores that were also confirmed by electron microscopy. Conclusion: Our study identified novel pathogenic variants in the TTN gene that are likely responsible for the phenotype of early-onset myopathy; hence, expanding genotype-phenotype relationship of titinopathies.


Subject(s)
Connectin , Exome , Muscular Diseases/congenital , Child , Child, Preschool , Connectin/genetics , Female , Homozygote , Humans , Male , Muscular Diseases/genetics , Mutation , Pedigree , Saudi Arabia , Exome Sequencing
2.
Brain ; 144(3): 769-780, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33764426

ABSTRACT

Membrane trafficking is a complex, essential process in eukaryotic cells responsible for protein transport and processing. Deficiencies in vacuolar protein sorting (VPS) proteins, key regulators of trafficking, cause abnormal intracellular segregation of macromolecules and organelles and are linked to human disease. VPS proteins function as part of complexes such as the homotypic fusion and vacuole protein sorting (HOPS) tethering complex, composed of VPS11, VPS16, VPS18, VPS33A, VPS39 and VPS41. The HOPS-specific subunit VPS41 has been reported to promote viability of dopaminergic neurons in Parkinson's disease but to date has not been linked to human disease. Here, we describe five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function.


Subject(s)
Cerebellar Ataxia/genetics , Genetic Predisposition to Disease/genetics , Neurodevelopmental Disorders/genetics , Protein Transport/genetics , Vesicular Transport Proteins/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Genetic Variation , Humans , Male , Pedigree , Young Adult , Zebrafish
3.
Neuromuscul Disord ; 30(7): 611-615, 2020 07.
Article in English | MEDLINE | ID: mdl-32616363

ABSTRACT

Congenital myasthenic syndrome comprises several genetic disorders that impair neuromuscular junction transmission. Causative mutations occur in at least 30 genes, approximately 6-8% of which are presynaptic. One such gene, VAMP1, encodes vesicle-associated membrane protein-1, which is crucial in the formation and fusion of synaptic vesicles with the presynaptic membrane at the neuromuscular junction. VAMP1 mutations are associated with two main phenotypes: a) autosomal recessive congenital myasthenic syndrome and b) autosomal dominant spastic ataxia 1. We report a girl from a consanguineous Saudi family presenting with hypotonia, developmental delay, feeding difficulties and floppiness since birth. Comprehensive genetic testing revealed a homozygous splicing mutation in VAMP1. RT-PCR confirmed the presence of an aberrant transcript causing skipping of exon 2 in the gene.


Subject(s)
Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Pyridostigmine Bromide/therapeutic use , Vesicle-Associated Membrane Protein 1/genetics , Child, Preschool , Female , Humans , Muscle Hypotonia/etiology , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...